• Title/Summary/Keyword: soil model

Search Result 4,496, Processing Time 0.037 seconds

Influence of Progressive Consolidation on Consolidation Behavior of Normally Consolidated Clayey Soil with Vertical Drains (연직배수재가 설치된 정규압밀 점성토 지반의 점진적 압밀이 차후 압밀거동에 미치는 영향)

  • Yune Chan-Young;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.5-18
    • /
    • 2005
  • In this study, the influence of progressive consolidation from the drainage boundary on the subsequent process of consolidation was investigated. Analytical theory and numerical program f3r consolidation of clayey soil were developed based on finite difference method, in which spatial variation of permeability and volume compressibility were implemented. And model ground with normally consolidated clayey soils and a vertical drain at its center were simulated. Various types of soils with different relations between coefficient of volume compressibility and permeability and void ratio were applied. Also numerical simulations based on the properties of the normally consolidated clay at Nakdong River basin and reconstituted kaolinite soil were performed to recognize its practical impact. Consequently, it is found out that retardation of consolidation induced by progressive consolidation is very important to understand consolidation behavior on field conditions and its effect is remarkable at the initial state of consolidation, and increases with plasticity index and applied load.

Analysis of Piled Raft Interactions in Sand with Centrifuge Test (원심모형실험을 통한 사질토 지반에서의 말뚝지지 전면기초 상호작용 분석)

  • Park, Dong-Gyu;Choi, Kyu-Jin;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.27-40
    • /
    • 2012
  • In the design of a piled raft, the axial resistance is offered by the raft and group piles acting on the same supporting ground soils. As a consequence, pile - soil - raft and pile - soil interactions, occurring by stress and displacement duplication with pile and raft loading conditions, act as a key element changing resistances of the raft and group piles. In this study, a series of centrifuge model tests have been performed to compare the axial behavior of group pile and raft with that of a piled raft (having 16 component piles with an array of $4{\times}4$) in sands with different relative densities. The test results revealed that the increase of settlement resistance occurs separately with settlement by group pile - soil interactions. The axial resistance of group piles (at piled raft) increases by group pile - raft (pile cap) interactions and that of raft (at piled raft) decreases by group pile - raft (pile cap) interactions.

Verification of Nonlinear Numerical Analysis for Seismic Response of Single Degree of Freedom Structure with Shallow Foundation (비선형 수치해석을 통한 단자유도 얕은기초 구조물의 지진 응답특성 검증)

  • Choo, Yun-Wook;Lee, Jin-Sun;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.29-40
    • /
    • 2013
  • Seismic response of single degree of freedom system supported by shallow foundation was analyzed by using nonlinear explicit finite difference element code. Numerical analysis results were verified with dynamic centrifuge test results of the same soil profile and structural dimensions with the numerical analysis model at a centrifugal acceleration of 20 g. Differences between the analysis and the test results induced by the boundary conditions of control points can be reduced by adding additional local damping to the natural born cyclic hysteretic damping of the soil strata. The analysis results show good agreement with the test results in terms of both time histories and response spectra. Thus, it can be concluded that the nonlinear explicit finite difference element code will be a useful technique for estimating seismic residual displacement, earthpressure etc. which are difficult to measure during laboratory tests and real earthquake.

Stiffness of Bucket Foundation in Sand (사질토 지반에 설치된 버킷기초의 강성)

  • Park, Jeongseon;Park, Duhee;Yoon, Sewoong;Jang, Hwasup;Yoon, Jinam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.8
    • /
    • pp.5-15
    • /
    • 2017
  • To perform an integrated load analysis carried out to evaluate the stability evaluation of wind turbine generators, the six degree-of-freedom stiffness matrix of foundation, which describes relationships between loads and displacement, is needed. Since the foundation stiffness should accurately reflect the shape of foundation and the condition of soil, it is necessary to calculate the stiffness of the bucket foundation that considers the elasto-plastic behavior of the soil. In this study, finite element analyses were performed for a range of soils and shapes of bucket foundations to estimate the foundation stiffness. Normalized stiffness curves are developed from respective numerical simulations. Proposed results are considered to be useful because they can be directly applied in the design.

Experimental study on water exchange between crack and clay matrix

  • Song, Lei;Li, Jinhui;Garg, Ankit;Mei, Guoxiong
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.283-291
    • /
    • 2018
  • Cracks in soil provide significant preferential pathways for contaminant transport and rainfall infiltration. Water exchange between the soil matrix and crack is crucial to characterize the preferential flow, which is often quantitatively described by a water exchange ratio. The water exchange ratio is defined as the amount of water flowing from the crack into the clay matrix per unit time. Most of the previous studies on the water exchange ratio mainly focused on cracked sandy soils. The water exchange between cracks and clay matrix were rarely studied mainly due to two reasons: (1) Cracks open upon drying and close upon wetting. The deformable cracks lead to a dynamic change in the water exchange ratio. (2) The aperture of desiccation crack in clay is narrow (generally 0.5 mm to 5 mm) which is difficult to model in experiments. This study will investigate the water exchange between a deformable crack and the clay matrix using a newly developed experimental apparatus. An artificial crack with small aperture was first fabricated in clay without disturbing the clay matrix. Water content sensors and suction sensors were instrumented at different places of the cracked clay to monitor the water content and suction changes. Results showed that the water exchange ratio was relatively large at the initial stage and decreased with the increasing water content in clay matrix. The water exchange ratio increased with increasing crack apertures and approached the largest value when the clay was compacted at the water content to the optimal water content. The effective hydraulic conductivity of the crack-clay matrix interface was about one order of magnitude larger than that of saturated soil matrix.

Analysis of dynamic behavior for underground structures under earthquake loading (지진하중을 받는 지하구조물에 대한 동적 거동 해석)

  • Park, Seong-Yong;Lee, Jae-Jin;Choi, Seung-Ho;Kim, Soo-Il;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.205-217
    • /
    • 2007
  • The behavior characteristics of underground structures are reported as they are not affected by their dynamic characteristics such as surface structures, but by dynamic characteristics of soil and rock surrounding the underground structures. Therefore, dynamic behavior of surrounding soil and rock dominates the dynamic behavior of the underground structure. The purpose of this paper is to analyze the dynamic response (longitudinal deformation and ovaling deformation) of the underground structure under earthquake loading. The dynamic responses of the underground structures were evaluated with varying earthquake conditions, soil conditions, and structural conditions using conventional closed-form solution of seismic behavior of underground structure. In addition, shaking table tests were conducted to simulate the earthquake loading and the dynamic behavior of the model was analyzed.

  • PDF

A Review on the Application of Stable Water Vapor Isotope Data to the Water Cycle Interpretation (수증기안정동위원소의 물순환 해석에의 적용에 대한 고찰)

  • Lee, Jeonghoon;Han, Yeongcheol;Koh, Dong-Chan;Kim, Songyi;Na, Un-Sung
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.34-40
    • /
    • 2015
  • Studies using stable water vapor isotopes have been recently conducted over the past two decades because of difficulties in analysis and sample collection in the past. Stable water vapor isotope data provide information of the moisture transport from ocean to continent, which are also used to validate an isotope enabled general circulation model for paleoclimate reconstructions. The isotopic compositions of groundwater and water vapor also provide a clue to how moisture moves from soil to atmosphere by evapotranspiration. International Atomic Energy Agency designates the stations over the world to observe the water vapor isotopes. To analyze the water vapor isotopes, a cryogenic sampling method has been used over the past two decades. Recently, two types of laser-based spectroscopy have been developed and remotely sensed data from satellites have the global coverage. In this review, measurements of isotopic compositions of water vapor will be introduced and some studies using the water vapor isotopes will also be introduced. Finally, we will suggest the future study in Korea.

Pore Water Pressure Characteristic of Unsaturated Weathered Granite Soil Slopes through Rainfall Simulation (강우재현모형실험에 의한 불포화 화강풍화토 사면의 간극수압 특성)

  • Kim, Sun-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3287-3295
    • /
    • 2009
  • This present study implemented a rainfall simulation system, and performed simulation and numerical analysis according to rainfall and slope conditions using a model slope built with weathered granite soil. Extensive analysis were conducted on the characteristics of changes in volumetric water content and pore water pressure measured in the simulation, and compared them with the results of numerical analysis. It took longer for the volumetric water content to reach the limit when rainfall intensity was high and the slope was steep and shorter when rainfall intensity was low and the slope was gentle. When rainfall intensity was low and the duration of rainfall was short, negative pore water pressure was higher and the time for restoration was shorter. On the contrary, when rainfall intensity was high and the duration of rainfall was long, it took a longer time to restore negative pore water pressure. In the results of rainfall simulation and numerical analysis, the distribution of volumetric water content and pore water pressure was similar between the two. However, the volumetric water content was different by up to 5%, and pore water pressure by up to 3kPa.

Centrifuge-Shaking Table Test for Seismic Performance Evaluation of Subway Station (지하역사의 내진성능평가를 위한 원심모형 진동대 시험)

  • Kim, Jin Ho;Shin, Min Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.99-105
    • /
    • 2011
  • When a certain magnitude earthquake occurs, serious damage for human and properties is a major concern for most of the subway stations which were not applied for earthquake resistant design. Consideration and experimental verification for ground and structural behavior based on soil-structure interaction relation are required to evaluate seismic performance of the subway station as embedded structures. For 1/60 scaled subway station model, centrifuge modeling shaking table test is performed using Kobe and Northridge earthquakes. Compare to displacements and moments of the underground and structure obtained by soil response analysis and response displacement method based on experimental results, this paper shows how to evaluate seismic performance of subway station.

Prediction of Hydraulic Conductivity from Gran-size Distribution Parameters (입도분포를 이용한 투수계수의 예측)

  • Song, Young-Woo;Lee, In-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.5-12
    • /
    • 2002
  • Hydraulic conductivity k is one of the most important engineering properties of soil. However, both field and laboratory procedures fur the determination of k are often tedious and expensive. This paper presents new models to predict k using statistical parameters from grain size distribution. A number of permeability tests far 36 types of sands mixed based on statistics were conducted to develop the regression-based models. Parameters used to estimate k are both the geometric mean and geometric standard deviation of the soil samples, or the particle-size distribution curve parameters such as D_{10},D_{50},D_{60}. Hydraulic conductivity predicted by this model is in good agreement with the laboratory measurements fir the soil samples obtained at 20 locations within the Korean Peninsula. The performances of the proposed models were also compared with those of existing models including Hazen's.