• Title/Summary/Keyword: soil model

Search Result 4,495, Processing Time 0.033 seconds

Discrete Element Method (DEM) Analysis of Soil Plug Formation in Impact-Driven Open-ended Piles (이산요소해석법을 활용한 개단말뚝의 관내토 거동 분석)

  • Kim, Youngsang;Kim, Mintae
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.145-154
    • /
    • 2024
  • This study used the discrete element method (DEM) to model the driving process of open-ended piles and investigate the behavior of soil plug during pile penetration. The developed DEM model was verified by comparing model pile test results and numerical analysis, particularly using a contact model considering rolling resistance between soil particles. The study successfully simulated soil compression inside the pile by adjusting the relative density and penetration velocity, and it was confirmed that the soil plug tended to be more compressed as the initial penetration velocity decreased. Soil plug length measurements, plug length ratio, and incremental filling ratio were analyzed and validated against experimental results. The developed DEM model aims to reduce trial and error in further studies by detailing the modeling and verification process.

A Study on the Stress Distribution in Soil According to the Composition of the Soil Layer in Case of Surface Loading (지표면 재하시 토층구성에 따른 지중응력분포에 관한 연구)

  • Lim, Jong-Seok;Jung, Sang-Kyun;Ha, Hyuk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.510-516
    • /
    • 2005
  • This research aims to verify the stress distribution in soil according to the composition of the soil layer in case of surface loading. For this purpose, loading tests with measurement of stresses in the soil on four kinds of layered model ground in laboratory were performed. Those are (1)homogeneous sand, (2)gravel underlain by sand, (3)sand underlain by clay and (4)gravel underlain by clay. Test results are compared and analysed for the compositions of the soil layers. based on the results obtained, it is found that the larger the difference of the strengths of upper and lower layer is, the smaller the stress in the soil in case of surface loading is.

  • PDF

Seismic evaluation of fluid-elevated tank-foundation/soil systems in frequency domain

  • Livaoglu, R.;Dogangun, A.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.101-119
    • /
    • 2005
  • An efficient methodology is presented to evaluate the seismic behavior of a Fluid-Elevated Tank-Foundation/Soil system taking the embedment effects into accounts. The frequency-dependent cone model is used for considering the elevated tank-foundation/soil interaction and the equivalent spring-mass model given in the Eurocode-8 is used for fluid-elevated tank interaction. Both models are combined to obtain the seismic response of the systems considering the sloshing effects of the fluid and frequency-dependent properties of soil. The analysis is carried out in the frequency domain with a modal analysis procedure. The presented methodology with less computational efforts takes account of; the soil and fluid interactions, the material and radiation damping effects of the elastic half-space, and the embedment effects. Some conclusions may be summarized as follows; the sloshing response is not practically affected by the change of properties in stiff soil such as S1 and S2 and embedment but affected in soft soil. On the other hand, these responses are not affected by embedment in stiff soils but affected in soft soils.

An Experimental Study on Behavior Characteristic of the Soil Nailed Wall with Facing Stillness (전면벽체 강성에 따른 쏘일네일링 벽체의 거동특성에 관한 실험적 고찰)

  • 김홍택;강인규;권영호;조용훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.279-286
    • /
    • 2002
  • Recently, there are many attempts to expand a temporary soil nailing system into a permanent wall due to the advantage of soil nailing system, that is efficient and economic use of underground space and decreasing the total construction cost. However, the proper design approach of a permanent soil nailing system has not been proposed by now in Korea. Permanent soil nailing system which utilizes precast concrete walls for the facing of soil nailing system Is already used in many countries. In general, the cast-in-place concrete facings or rigid walls were constructed in bottom-up way after construction of soil nailing walls finished preliminarily In this paper, various laboratory model tests have been carried out to investigate the failure mode, behavior characteristics, and tensile force at nail head in each load level in respects of the variation of stiffness of the facing.

  • PDF

Application and its reinforcing effect of soil nailed-drilled shafts (Soil Nail로 보강된 현장타설말뚝의 적용성 및 보강효과 분석)

  • Jeong, Sang-Seom;Kim, Byung-Chul;Lee, Dae-Soo;Kim, Dae-Hong;Kim, Dae-Hak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.50-57
    • /
    • 2004
  • In this study reinforcing effect of soil nailed-drilled shafts subjected to axial and lateral loads were evaluated. Special attention was given to the reinforcing effects of soil nails placed from the drilled shafts to surrounding weathered- and soft-rocks based on model tests, numerical analyses and load tests. The model tests and numerical analyses are conducted to analyze the reinforcing effect of various conditions of number, inclination, position and length. The results of 1/40 scale model tests and numerical analyses show that as the number of reinforcing level increases, the incremental effect of reinforcement tends to increase, whereas the reinforcing effect on relative position is negligible. In addition there is a reinforcing effect as the inclination angle increaes up to 30 degrees. Based on the results of tensile load tests, soil nailed-drilled shafts has a considerably smaller settlement to reach the ultimate level when compared with the result of un-reinforced drilled shafts. For compression tests, there is a reinforcing effect of about 200% measured.

  • PDF

Application of a weight-of-evidence model to landslide susceptibility analysis Boeun, Korea

  • Moung-Jin, Lee;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.65-70
    • /
    • 2003
  • The weight-of-evidence model one of the Bayesian probability model was applied to the task of evaluating landslide susceptibility using GIS. Using the location of the landslides and spatial database such as topography, soil, forest, geology, land use and lineament, the weight-of-evidence model was applied to calculate each factor's rating at Boun area in Korea where suffered substantial landslide damage fellowing heavy rain in 1998, The factors are slope, aspect and curvature from the topographic database, soil texture, soil material, soil drainage, soil effective thickness, and topographic type from the soil database, forest type, timber diameter, timber age and forest density from the forest map, lithology from the geological database, land use from Landsat TM satellite image and lineament from IRS satellite image. Tests of conditional independence were performed for the selection of the factors, allowing the 43 combinations of factors to be analyzed. For the analysis, the contrast value, W$\^$+/and W$\^$-/, as each factor's rating, were overlaid to map laudslide susceptibility. The results of the analysis were validated using the observed landslide locations, and among the combinations, the combination of slope, curvature, topographic, timber diameter, geology and lineament show the best results. The results can be used for hazard prevention and planning land use and construction

  • PDF

Rainwater Infiltration Characteristics in the Unsaturated Soil : Comparison of Finite Element Model with Experimental Results (불포화 토양에서 빗물의 침투특성 : 유한요소 모델과 실험결과 비교)

  • Yoo, Kun-Sun;Kim, Sang-Rae;Kim, Tschung-Il;Yoon, Hyun-Sik;Han, Moo-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.27-33
    • /
    • 2011
  • Infiltration plays an important role in the urban water cycle. Infiltration has a potential to contribute to groundwater recharge in addition to runoff reduction. However, infiltration in urban areas has been considered only as a means of runoff reduction. Conventional design methods for infiltration facilities assume soils to be fully-saturated for the sake of simplicity. The amount of groundwater recharge can not be estimated properly with this scheme. Hence, the characteristics of the unsaturated soil condition need to be considered. The finite element model using SEEP/W to estimate infiltration under the unsaturated condition is presented. Infiltration tests for Joomonjin sand are performed and the infiltration behavior of Joomoonjin sand under the unsaturated condition is measured experimentally to verify the validity of the finite element model. The results from comparing infiltrated volume between the saturated and the unsaturated conditions under the same soil and rainfall conditions show that the infiltrated volume in the unsaturated condition is two times bigger than that in the saturated condition.

Computational Soil-Structure Interaction Design via Inverse Problem Formulation for Cone Models

  • Takewaki, Izuru;Fujimoto, Hiroshi;Uetani, Koji
    • Computational Structural Engineering : An International Journal
    • /
    • v.2 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • A computationally efficient stiffness design method for building structures is proposed in which dynamic soil-structure interaction based on the wave-propagation theory is taken into account. A sway-rocking shear building model with appropriate ground impedances derived from the cone models due to Meek and Wolf (1994) is used as a simplified design model. Two representative models, i.e. a structure on a homogeneous half-space ground and a structure on a soil layer on rigid rock, are considered. Super-structure stiffness satisfying a desired stiffness performance condition are determined via an inverse problem formulation for a prescribed ground-surface response spectrum. It is shown through a simple yet reasonably accurate model that the ground conditions, e.g. homogeneous half-space or soil layer on rigid rock (frequency-dependence of impedance functions), ground properties (shear wave velocity), depth of surface ground, have extensive influence on the super-structure design.

  • PDF

Modified Lysmer's analog model for two dimensional mat settlements under vertically uniform load

  • Chang, Der-Wen;Hung, Ming-He;Jeong, Sang-Seom
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.221-231
    • /
    • 2021
  • A two dimensional model of linearly elastic soil spring used for the settlement analysis of the flexible mat foundation is suggested in this study. The spring constants of the soils underneath the foundation were modeled assuming uniformly vertical load applied onto the foundation. The soil spring constants were back calculated using the three-dimensional finite element analysis with Midas GTS NX program. Variation of the soil spring constants was modeled as a two-dimensional polynomial function in terms of the normalized spatial distances between the center of foundation and the analytical points. The Lysmer's analog spring for soils underneath the rigid foundation was adopted and calibrated for the flexible foundation. For validations, the newly proposed soil spring model was incorporated into a two dimensional finite difference analysis for a square mat foundation at the surface of an elastic half-space consisting of soft clays. Comparative study was made for elastic soils where the shear wave velocity is 120~180 m/s and the Poisson's ratio varies at 0.3~0.5. The resulting foundation settlements from the two dimensional finite difference analysis with the proposed soil springs were found in good agreement with those obtained directly from three dimensional finite element analyses. Details of the applications and limitations of the modified Lysmer's analog springs were discussed in this study.

Distribution of elastoplastic modulus of subgrade reaction for analysis of raft foundations

  • Rahgooy, Kamran;Bahmanpour, Amin;Derakhshandi, Mehdi;Bagherzadeh-Khalkhali, Ahad
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.89-105
    • /
    • 2022
  • The behavior of the soil subgrade is complex and irregular against loads. When modeling, the soil is often replaced by a more straightforward system called a subgrade model. The Winkler method of linear elastic springs is a popular method of soil modeling in which the spring constant shows the modulus of subgrade reaction. In this research, the factors affecting the distribution of the modulus of subgrade reaction of elastoplastic subgrades are examined. For this purpose, critical theories about the modulus of subgrade reaction were examined. A square raft foundation on a sandy soil subgrade with was analyzed at different internal friction angles and Young's modulus values using ABAQUS software. To accurately model the actual soil behavior, the elastic, perfectly plastic constitutive model was applied to investigate a foundation on discrete springs. In order to increase the accuracy of soil modeling, equations have been proposed for the distribution of the subgrade reaction modulus. The constitutive model of the springs is elastic, perfectly plastic. It was observed that the modulus of subgrade reaction under an elastic load decreased when moving from the corner to the center of the foundation. For the ultimate load, the modulus of subgrade reaction increased as it moved from the corner to the center of the foundation.