• Title/Summary/Keyword: soil health index

Search Result 68, Processing Time 0.024 seconds

Quality Assessment of the Soils Used for Urban Agriculture in Seoul and its Vicinity

  • Lim, Ga-Hee;Park, Sol-Yi;Jeon, Da-Som;Yoon, Jung-Hwan;Lee, Dan-Bi;Oh, Jun-Seok;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.572-576
    • /
    • 2016
  • Soil quality assessment is an important tool for environmental management in an agricultural field. It can be used to evaluate the health of the soils and to establish the basis for sustainable urban agriculture and soil management. For this study, the chemical properties of the soils used for urban agriculture were examined. Results of the soil analysis for chemical properties were applied to soil quality assessment system, which is composed of principal component analysis, application to scoring function and derivation of soil quality index (SQI). Soil pH, electrical conductivity (EC), organic matter (OM), total nitrogen (T-N) were determined for minimum data set (MDS) according to principal component analysis. Based on the results of scoring for four indicators (pH, EC, OM, T-N), soil pH was the indicator that needs the most urgent management. Results of SQI derivation showed that many of the urban farms appeared to be insufficient score in comprehensive soil quality assessment. In conclusion, soil management practices based on scores derived from soil chemical indicators need to be carried out to maintain sustainable urban agricultural soil environment and to provide easy-to-understand information to urban farmers.

Review of Assessing Soil Quality Criteria for Environmentally-Sound Agricultural Practics and Future Use (환경적으로 안전한 농업과 미래용도를 위한 토질 기준 평가 검토)

  • Doug Young Chung
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.127-145
    • /
    • 1998
  • Unlike water or air quality standards that have been established by legislation using potential human health impact as the primary criterion, soil quality depends on the soils primary function and its relevant environmental factors, which is much more site- and soil specific. A properly characterized soil quality assessment system should serve as an indicator of the soil capacity to produce safe and nutritious food, to enhance human and animal health, and to overcome degrative processes. For our proposed example, a high quality soil with regard to maintaining an adequate soil productivity as a food production resources must accommodate soil and water properties, food chain, sustainability and utilization, environment, and profitability, that (i) facilitate water transfer and absorption, (ii) sustain plant growth, (iii) resist physical degradation of soil, (iv) produce a safe food resources, (v) cost-effective agricultural management. Possible soil quality indicators are identified at several levels within the framework for each of these functions. Each indicator is assigned a priority or weight that reflects its relative importance using a multi-objective approach based on principles of systems to be considered. To do this, individual scoring system is differentiated by the several levels from low to very high category or point scoring ranging from 0 to 10, And then weights are multiplied and products are summed to provide an overall soil quality rating based on several physical and chemical indicators. Tlne framework and procedure in developing the soil quality assessment are determined by using information collected from an alternative and conventional farm practices in the regions. The use of an expanded framework for assessing effects of other processes, management practices, or policy issues on soil quality is also considered. To develop one possible form for a soil quality index, we should permit coupling the soil characteristics with assessment system based on soil properties and incoming and resident chemicals. The purpose of this paper is to discuss approaches to defining and assessing soil quality and to suggest the factors to be considered.

  • PDF

Evaluation of Air Pollution Effects in Seoul City on Forest Soil at Mt. Namsan by Assay of Denitrifying and Sulfur-Reducing Bacteria (탈질균(脫窒菌) 및 황산환원균(黃酸還元菌) 정량(定量)을 통(通)한 서울의 대기오염(大氣汚染)이 남산(南山)의 토양(土壤)에 미치는 영향(影響) 평가(評價))

  • Park, Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.98-104
    • /
    • 1997
  • Soil pollution intensity at Mt. Namsan in Seoul city which was expected to show significant soil contamination due to long-term air pollution was evaluated by comparing soil chemical properties at Mt. Kyebangsan in Hongcheon area as a control, and the bacteria participating in nitrogen or sulfur mineralization were assayed simultaneously in order to evaluate the validity of N and/or S mineralization bacteria as an index of soil contamination. The soil of Mt. Namsan showed 10 times higher concentration of hydrogen ion compared to that of Mt. Kyebangsan, which indicated that the soil had relatively been acidified seriously. Especially, large amount of canons were thought to be leached out from the soil, while the amount of extractable Al was getting larger and larger, which result in serious problems in soil ecosystem of the mountain. I could infer from soil chemical properties of the four study sites that the major reason of soil acidification was SOx deposition. However, the sulfur-reducing bacteria were not significantly different between the two regions, which indicated that the microbial dynamics of the soil ecosystem was not controlled by simple factor, but by multiple factors. By the way, the dynamics of bacteria participating in denitrification process was different between the two regions, which was more active at Mt. Kyebangsan than at Mt. Namsan. Thus, the microbial assay for nitrogen mineralization is desirable to be examined as a tool for evaluating soil health or microbial activity in soil ecosystem.

  • PDF

Risk Assessment for Heavy Metals in Soil, Ground Water, Rice Grain nearby Abandoned Mine Areas (국내 폐금속 광산지역에서의 토양, 지하수, 쌀의 중금속 노출에 따른 인체 위해성평가)

  • Na, Eun-Shik;Lee, Yong-Jae;Ko, Kwang-Yong;Chung, Doug-Young;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.245-251
    • /
    • 2013
  • BACKGROUND: The objectives of this study are to investigate the contamination levels of heavy metals in soil, ground water, and agricultural product near the abandoned Boeun and Sanggok mine areas in Korea and to assess the health risk for these local residents exposed to the toxic heavy metals based on analytical data. METHODS AND RESULTS: By the results of human health risk assessment for local residents around Boeun and Sanggok, human exposure to cadmium, copper, arsenic from soil and to lead, cadmium, and arsenic from rice grain were higher in Sanggok, but human exposure to zinc and arsenic from ground water was higher in Boeun. By the results of hazard index (HI) evaluation for arsenic, cadmium, copper, lead, and zinc, HI values in both areas were higher than 1.0. This result indicated that the toxicity hazard through the continuous exposure to lead, cadmium, arsenic from rice, ground water, and soil would be likely to occur to the residents in the areas. Cancer risk assessment for arsenic, risks from the rice were exposed to one to two out of 10,000 people in Boeun and one of 1,000 people in Sanggok. These results showed that the cancer risks of arsenic in both areas were 10~100 times greater than the acceptable cancer risk range of US EPA ($1{\times}10^{-6}{\sim}1{\times}10^{-5}$). CONCLUSION(S): Therefore, if these two local residents consume continuously with arsenic contaminated soil, ground water, and rice, the adverse health effects (carcinogenic potential) would be more increased.

Risk assessment of heavy metals in soil based on the geographic information system-Kriging technique in Anka, Nigeria

  • Johnbull, Onisoya;Abbassi, Bassim;Zytner, Richard G.
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.150-158
    • /
    • 2019
  • Soil contaminated with heavy metals from artisanal gold mining in Anka Local Government Area in Northwestern Nigeria was investigated to evaluate the human health risk as a result of heavy metals. Measured concentration of heavy metals and exposure parameters were used to estimate human carcinogenic and non-carcinogenic risk. GIS-based Kriging method was utilized to create a prediction maps of human health risks and probability maps of heavy metals concentrations exceeding their threshold limits. Hazard index calculation showed that 21 out of 23 locations are posing non-cancer risk for children. Adults and children are at high cancer risk in all locations as the total cancer risk exceeded $1{\times}10^{-6}$ (the lower limit CTR value). Kriging model showed that only a very small area in Anka has a hazard index of less than unity and cumulative target risk of less than $1{\times}10^{-4}$, indicating a significant carcinogenic and non-carcinogenic risks for children. The probability of heavy metals to exceed their threshold concentrations around the study area was also found to be high.

Assessment of health risk associated with arsenic exposure from soil, groundwater, polished rice for setting target cleanup level nearby abandoned mines

  • Lee, Ji-Ho;Kim, Won-Il;Jeong, Eun-Jung;Yoo, Ji-Hyock;Kim, Ji-Young;Lee, Je-Bong;Im, Geon-Jae;Hong, Moo-Ki
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.38-47
    • /
    • 2011
  • This study focused on health risk assessment via multi-routes of As exposure to establish a target cleanup level (TCL) in abandoned mines. Soil, ground water, and rice samples were collected near ten abandoned mines in November 2009. The As contaminations measured in all samples were used for determining the probabilistic health risk by Monte-Carlo simulation techniques. The human exposure to As compound was attributed to ground water ingestion. Cancer risk probability (R) via ground water and rice intake exceeded the acceptable risk range of $10^{-6}{\sim}10^{-4}$ in all selected mines. In particular, the MB mine showed the higher R value than other mines. The non-carcinogenic effects, estimated by comparing the average As exposure with corresponding reference dose were determined by hazard quotient (HQ) values, which were less than 1.0 via ground water and rice intake in SD, NS, and MB mines. This implied that the non-carcinogenic toxic effects, due to this exposure pathway had a greater possibility to occur than those in other mines. Besides, hazard index (HI) values, representing overall toxic effects by summed the HQ values were also greater than 1.0 in SD, NS, JA, and IA mines. This revealed that non-carcinogenic toxic effects were generally occurred. The As contaminants in all selected mines exceeded the TCL values for target cancer risk ($10^{-6}$) through ground water ingestion and rice intake. However, the As level in soil was greater than TCL value for target cancer risk via inadvertent soil ingestion pathway, except for KK mine. In TCL values for target hazard quotient (THQ), the As contaminants in soil did not exceed such TCL value. On the contrary, the As levels in ground water and polished rice in SD, NS, IA, and MB mines were also beyond the TCL values via ground water and rice intake. This study concluded that the health risks through ground water and rice intake were greater than those though soil inadvertent ingestion and dermal contact. In addition, it suggests that the abandoned mines to exceed the risk-based TCL values are carefully necessary to monitor for soil remediation.

Assessment of Selected Heavy Metal Concentrations in Agricultural Soils around Industrial Complexes in Southwestern Areas of Korea

  • Kim, Dong-Jin;Park, Jung-Hwon;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.524-530
    • /
    • 2016
  • Agricultural soils near or around industrial complexes can contain a certain amount of heavy metals that readily enter the food chain and negatively affect human health. Therefore, we conducted the study to investigate the distribution of selected heavy metals, including arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), mercury (Hg), and zinc (Zn), in farm-land soils around fifteen industrial complexes in the southwestern provinces, Korea. The concentrations of heavy metals in the soil samples were determined by the pseudo-total aqua regia (3 HCl : $1HNO_3$) digestion procedure. The heavy metal concentrations in most soils examined did not exceed the levels of Soil Contamination Warning Standard (SCWS) for agricultural lands (Region 1) presented in Soil Environment Conservation Law (SECL) established by Ministry of Environment (MOE), Korea. However, only one sampling site showed higher As amount ($27.1mg\;kg^{-1}$) than the SCWS level of As ($25mg\;kg^{-1}$). Pollution index (PI) for heavy metals did not exceed 1.0. The PI values were significantly positively correlated (p < 0.01) with the heavy metal concentrations. In particular, the values of correlation coefficient between the Cd and Pb concentrations and the PI values were higher than those estimated from other combinations, and thus the amounts of Cd and Pb in the agricultural soils highly affected the PI values for the heavy metals.

Assessment of changes on water quality and aquatic ecosystem health in Han river basin by additional dam release of stream maintenance flow (하천유지유량 추가 댐방류에 따른 한강유역의 수질 및 수생태계 건강성 변화 평가)

  • Woo, So Young;Kim, Seong Joon;Hwang, Sun Jin;Jung, Chung Gil
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.777-789
    • /
    • 2019
  • The purpose of this study is to evaluate changes in water quality and aquatic ecosystem health by additional dam release of stream maintenance flow from multipurpose dams in Han river basin ($34,148km^2$) using SWAT (Soil and Water Assessment Tool). The period of additional release was spring (April to June) and autumn (August to October) to evaluate the changes with the data of aquatic ecosystem health survey. The amount of additional release was set proportional to the present dam release, and the maximum release amount was controlled not to exceed the officially notified stream maintenance flow from dam. The 10 percent to 50 percent additional releases showed that the stream water quality (T-N, $NH_4$, T-P, and $PO_4-P$) concentrations except $NO_3-N$ decreased in spring while increased in autumn period. Using the stream water quality results and applying with Random Forest algorithm, the grade of aquatic ecosystem health index (FAI, TDI, and BMI) was improved for both periods especially in the downstream of basin. This study showed that the additional release of stream maintenance flow was more effective in spring than autumn period for the improvement of water quality and aquatic ecosystem.

Drought analysis by using ICDI in the US Corn Belt (ICDI를 이용한 미국 콘벨트의 가뭄 분석)

  • Lee, Soo-Jin;Lee, Yangwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.459-459
    • /
    • 2022
  • 물수지의 불균형으로 발생되는 가뭄은 장기간에 걸쳐 넓은 규모로 발생되는 자연재해로서, 농업 및 산업에 직접 피해와 다양한 상품에 대한 공급 부족으로 인한 가격 상승 등의 간접 피해를 야기하는 재해이다. 이러한 가뭄을 정량적으로 평가하기 위하여 기상 요인(강수, 기온), 농업 요인(식생), 수문 요인(증발산, 토양수분) 등과 같은 설명 변수를 기초로 하는 많은 가뭄지수들이 개발되어 왔다. 대표적인 가뭄지수에는 Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI), Soil Water Deficit Index (SWDI), Vegetation condition index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), Scaled Drought Condition Index (SDCI), Integrated Crop Drought Index (ICDI) 등이 있다. 본 연구는 최근 개발된 통합작물가뭄지수(ICDI)를 통해 미국 옥수수의 약 90%를 생산하는 농업지역인 미국 콘벨트의 가뭄 특성을 분석하고자 한다. ICDI는 기상 요인(강우량 및 지표면 온도), 수문학적 요인(잠재 증발산 및 토양수분), 식생 요인(강화식생지수(Enhanced Vegetation Index, EVI))의 조합을 통해 지표면의 건조·습윤 상태 및 식생의 건강 상태를 설명하는 가뭄지수이다. 2004년부터 2019년까지 주요 콘벨트 지역인 일리노이, 인디애나, 아이오와를 대상으로 가뭄분석을 실시하였으며, 옥수수 수확량 아노말리와의 상관성을 분석하였다.

  • PDF

Spatial Estimation of Forest Species Diversity Index by Applying Spatial Interpolation Method - Based on 1st Forest Health Management data- (공간보간법 적용을 통한 산림 종다양성지수의 공간적 추정 - 제1차 산림의 건강·활력도 조사 자료를 이용하여 -)

  • Lee, Jun-Hee;Ryu, Ji-Eun;Choi, Yu-Young;Chung, Hye-In;Jeon, Seong-Woo;Lim, Jong-Hwan;Choi, Hyung-Soon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.4
    • /
    • pp.1-14
    • /
    • 2019
  • The 1st Forest Health Management survey was conducted to examine the health of the forests in Korea. However, in order to understand the health of the forests, which account for 63.7% of the total land area in South Korea, it is necessary to comprehensively spatialize the results of the survey beyond the sampling points. In this regard, out of the sample points of the 1st Forest Health Management survey in Gyeongbuk area, 78 spots were selected. For these spots, the species diversity index was selected from the survey sections, and the spatial interpolation method was applied. Inverse distance weighted (IDW), Ordinary Kriging and Ordinary Cokriging were applied as spatial interpolation methods. Ordinary Cokriging was performed by selecting vegetation indices which are highly correlated with species diversity index as a secondary variable. The vegetation indices - Normalized Differential Vegetation Index(NDVI), Leaf Area Index(LAI), Sample Ratio(SR) and Soil Adjusted Vegetation Index(SAVI) - were extracted from Landsat 8 OLI. Verification was performed by the spatial interpolation method with Mean Error(ME) and Root Mean Square Error(RMSE). As a result, Ordinary Cokriging using SR showed the most accurate result with ME value of 0.0000218 and RMSE value of 0.63983. Ordinary Cokriging using SR was proven to be more accurate than Ordinary Kriging, IDW, using one variable. This indicates that the spatial interpolation method using the vegetation indices is more suitable for spatialization of the biodiversity index sample points of 1st Forest Health Management survey.