• Title/Summary/Keyword: soil filtration

Search Result 183, Processing Time 0.031 seconds

Molecular Size Fractionation of Soil Fulvic Acid by Gel Filtration Chromatography and Analysis of Their Fluorescence Characteristics (겔 여과 크로마토그래피에 의한 토양 풀빅산의 분자량 분획 및 형광특성 분석)

  • Chung, Kun-Ho;Shin, Hyun-Sang;Lee, Wanno;Cho, Yeong-Hyun;Choi, Geun-Sik;Lee, Chang-Woo
    • Analytical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.163-172
    • /
    • 2004
  • The molecular size distribution and fluorescence properties of soil fulvic acids (FA) were characterized by using gel filtration chromatography (GFC) and luminescence spectroscopy. The objectives of this work were to fractionate the FA extracted from a forest soil into different nominal molecular size using GFC system and to characterize the fluorescence properties (excitation, emission and synchronous) of these fractions using luminescence spectrometer. The GFC column was calibrated with polyethylene glycols, acetone and dextrane Blue. The total permeation volume of the GFC system was 404 mL and the void volume 130 mL. The GFC molecular weight of the soil FA was in the range of 190~8,900 Dalton and the molecular weight at the peak on the chromatogram was 930 Dalton. The fluorescence intensity ratio ($I_{498nm}/I_{390nm}$) was found to be increased with an increasing molecular weight. This results may suggest that the fulvic acid fractions with high molecular weight have large amount of the condensed aromatic compound.

Optimum Pre-treatment Method in Constructed Wetlands by Natural Purification Method for Treating Livestock Wastewater (자연정화공법에 의한 인공습지에서 효과적인 축산폐수처리를 위한 최적 전처리방법 구명)

  • Park, Jong-Hwan;Seo, Dong-Cheol;Kim, Ah-Reum;Kim, Sung-Hun;Lee, Seong-Tea;Jeong, Tae-Uk;Choi, Jeong-Ho;Lee, Sang-Won;Cho, Ju-Sik;Kim, Hyun-Ook;Heo, Jong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.425-433
    • /
    • 2011
  • In order to obtain optimum pre-treatment methods and improve T-N and T-P removal efficiencies, removal rates of pollutants in small-scale livestock wastewater treatment apparatus with water plant filtration bed or activated sludge tank were investigated. Based on the results from the optimum pre-treatment in small-scale livestock wastewater treatment apparatus, removal efficiencies of pollutants in livestock wastewater treatment plant with water plant filtration and activated sludge beds. The removal rates of COD, SS, T-N, and T-P in effluent were 83, 89, 63 and 87% in small-scale livestock wastewater treatment apparatus with water plant filtration bed, respectively. The removal rates of COD, SS, T-N, and T-P in effluent were 96, 95, 86 and 92% in small-scale livestock wastewater treatment apparatus with activated sludge tank, respectively. For increasing the COD, SS, T-N, and T-P removals in small-scale livestock wastewater treatment apparatus, the water plant filtration and activated sludge beds are recommended. In livestock wastewater treatment plant with water plant filtration ($1^{st}$ treatment) and activated sludge ($2^{nd}$ treatment) beds, the concentrations of COD, SS, T-N, and T-P in effluent were 39, 15, 42 and $1mg\;L^{-1}$, respectively. It was shown that the concentrations of COD, SS, T-N, and T-P met acceptable effluent quality standard for livestock wastewater. Based on the above results, the removal rates of COD, SS, T-N, and T-P in effluent were over 99.8, 99.9, 99.2, and 99.9% in livestock wastewater treatment plant, respectively.

An Experimental Study on Filtration Efficiency of Sand Filter Layers to TSS and COD in Non-point Source Pollutant (분산형 빗물 저류조용 모래 여과층을 적용한 도심지 비점오염원의 TSS와 COD 정화효율에 대한 실험적 연구)

  • Ahn, Jaeyoon;Lee, Dongseop;Han, Shinin;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1477-1488
    • /
    • 2014
  • Prevalent construction of impermeable pavements in urban areas causes diverse water-related environmental issues, such as lowering ground water levels and shortage of water supply for the living. In order to resolve such problems, a rainwater reservoir can be an effective and useful solution. The rainwater reservoir facilitates the hydrologic cycle in urban areas by temporarily retaining precipitation-runoff within a shallow subsurface layer for later use in a dry season. However, in order to use the stored water of precipitation-runoff, non-point source pollutants mostly retained in initial rainfall should be removed before being stored in the reservoir. Therefore, the purification system to filter out the non-point source pollutants is essential for the rainwater reservoir. The conventional soil filtration technology is well known to be able to capture non-point source pollutants in a economical and efficient way. This study adopted a sand filter layer (SFL) as a non-point source pollutant removal system in the rainwater reservoir, and conducted a series of lab-scale chamber tests and field tests to evaluate the pollutant removal efficiency and applicability of SFL. During the laboratory chamber experiments, three types of SFL with the different grain size characteristics were compared in the chamber with a dimension of $20cm{\times}30cm{\times}60cm$. To evaluate performance of the reservoir systems, the concentration of the polluted water in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) were measured and compared. In addition, a reduction in hydraulic conductivity of SFL due to pollutant clogging was indirectly estimated. The optimum SFL selected through the laboratory chamber experiments was verified on the in-situ rainwater reservoir for field applicability.

Characteristics Evaluation of Non Point Source Treatment Facilities in Construction Site (건설 현장 내 비점오염원 처리 시설의 제거 특성 평가)

  • Choi, Younghoa;Jeong, Seolhwa;Kim, Changryong;Kim, Hyosang;Oh, Jihyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.53-62
    • /
    • 2009
  • This study was conducted to investigate characteristics of the non-point source pollution under construction and evaluate available pollution control methods. Suspended solid loading is high when soil disturbs by rainfall and this phenomenon is much more severe at the initial stage of construction than at the final one. There are three methods available for erosion and sediment control, which are check dam, silt fence, and geotextile. Check dam and silt fence are for control of suspense solids and geotextile is for preventing soil erosion during rainfall. They can be installed as temporary control facilities at construction sites. From the comparison of those methods, it was found that geotextile method was the most efficient for the runoff control of non-point source pollution. Check dam and silt fence can remove suspense solids by pore spaces to some degree, but the removal of pollutants mainly occurs through sedimentation. Because the temporary control facilities have limited removal efficiency of pollutant, they often cause civil claims and contamination of water environment. Hence, using a pressurized filtration system along with temporary control facilities, highly enhanced treatment efficiency was anticipated. In addition, the loading capacity of these techniques depends on filtration velocity and input loading. And their pre-treatments are necessary for efficient operation.

  • PDF

Simultaneous and quantitative determination of anion biocides in soil by liquid chromatography-tandem mass spectrometry (토양 중 음이온 바이오사이드의 HPLC-MS/MS 동시 정량분석법)

  • Yang, Eun-Young;Shin, Ho-Sang
    • Analytical Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.317-322
    • /
    • 2015
  • Simultaneous analytical method has developed for the determination of anion biocides in soil by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Chlorite and chlorate in soil were extracted with pure water, and cyanuric acid and sodium dodecylbenzenesulfonate (Na-DBS) were extracted with mobile phase (0.25 mM ammonium formate in 20 mM formic acid : acetonitrile (1:1)). The extract was injected into the LC-MS/MS system after filtration. The method detection limits in this study were 0.04 mg/kg for chlorite, 0.04 mg/kg for chlorate, 0.27 mg/kg for cyanuric acid, and 0.05 mg/kg for Na-DBS, respectively. The method was applied to the analysis of 50 soil samples collected from 40 sites sprayed with biocides and 10 background sites. As a result, anion biocides were not detected in all sites.

Reduction Effect of Nonpoint Source Pollutants and Drainage of Infiltration Grate Inlet (침투형 빗물받이의 배수 및 비점오염물질 저감 효과)

  • Lee, Wonyong;Lim, Bongsu;Park, Insung
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.474-480
    • /
    • 2017
  • This study was to estimate the reduction effect of nonpoint source pollutants according to the rainfall intensity and drainage of infiltration grate inlet. Soil infiltration flow was measured on-site and SS load by the filter part was calculated by the experimental data in laboratory reactor test. Soil infiltration flow was measured to be about $1m^3/hr$ in soil condition saturated with water. The filter part of the infiltration grate inlet was a hydraulic equipment unhindered by soil infiltration on the bottom of the storage tank, because the infiltration flow was measured to be about $3m^3/hr$ continuously in the closing infiltration hole condition. Infiltration flow and SS load were over about $1m^3/hr$ and 1.71 kg according to laboratory results by the filter part using the artifical sample. Therefore, the above values could be presented as the limitted value to start the reduction of filtration effect. Reduction efficiencies of SS load by the filter part for the rainfall intensity were about 87 % at 5 mm/hr and about 61 % at 10 mm/hr in consideration of one infiltration grate inlet got the drainage area about $200m^2$. The reduction efficiency of nonpoint source pollutants was very effective in the first flush rainfall. However, the reduction efficiency by rainfall density was higher than by flow.

Analysis of Growth Indicators of Applied Plants by AHU(Air Handling Unit)-linking with Artificial Soil-based Vegetation Bio-filters (인공토양기반 식생바이오필터의 AHU(Air Handling Unit) 연계를 통한 적용식물의 생육지표 분석)

  • Kim, Tae-Han;Lee, So-Dam;An, Byung-Ryul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.3
    • /
    • pp.99-110
    • /
    • 2018
  • Compared to yellow dust coming from China or particulate matter created naturally in spring due to Total Suspended Particulate(TSP), particulate matter in winter season have much more serious effect on human body as they penetrate cell membranes. Although such particulate matter are becoming a social issue, there are no concrete plans on how to reduce them. Air-purifying plants are limited in maintaining the indoor air quality of large area because it is usually difficult to quantify their performance. In order to improve this, a bio-filter that can be connected to air conditioner is suggested as an option. This study seeks to improve air conditioning model-based monitoring method for bio-filters from prior studies and objectify correlations between applied vegetation and growing environment into quantitative indicators. By doing so, this study seeks to provide criteria on plants applied to artificial soil-based vegetation bio-filters and basic information to set air-conditioning features. The study results confirmed significant tendency on the growing stability of each purifying plant in mechanical air-conditioning environment. Among three models selected for bio-filter vegetation models, epipremnum aureum showed high performance in quantitative indicators, including soil moisture, EC, and leaf temperature, etc., indicating that it would assure the highest growing stability in this test air-conditioning environment.

A Field Verification Study on the Effect of Filter Layers on Groundwater Level Drop Characteristics, Permeability, Optimum Yield and Well Efficiency in the Unconfined Aquifer Well for Riverbank Filtration Intake (강변여과수 취수를 위한 충적우물에서 필터층이 수위강하특성, 투수성, 적정양수량 및 우물효율에 미치는 영향에 대한 현장실증 연구)

  • Song, Jae-Yong;Lee, Sang-Moo;Kang, Byeong-Cheon;Lee, Geun-Chun;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.509-529
    • /
    • 2019
  • This study performs to evaluate the role of filter material at alluvial well for intake of riverbank filtration and the applicability and improvement effect of dual filter well. To achieve this objective, dual filter intake well and single filter intake well were installed with different filter conditions at riverbank free surface aquifer in soil layer then we evaluated filter material condition, permeability, optimum yield and well efficiency according to yield in drawdown test. As a results, we assumed forming dual filter layer minimizes sudden speed changes at boundary between aquifer and filter layer by cushioning of groundwater flow. This suppresses warm current then intake groundwater efficiently, therefore it seems decreasing peripheral groundwater level changes in spite of higher intake water amount than single filter intake well. Furthermore, we confirmed by test, installing dual filter improves permeability, optimum yield and well efficiency. The result will be used by combining with former study to set up standard of design/construction of dual filter intake well at alluvial aquifer layer. Furthermore, we expect this result will be used to prove application effect of dual filter intake well compared to single filter one and radial collector well which are mainly applied on riverbank filtration.

Production of Cyclodextrin Glucanotransferase from Aspergillus sp. CC-2-1 and its Characterization (Aspergillus sp. CC-2-1에 의해 생산되는 Cyclodextrin Glucanotransferase의 생산 및 특성)

  • Cho, Young-Je;Kim, Myoung-Uk
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1158-1167
    • /
    • 2000
  • To produce ${\beta}-cyclodextrin({\beta}-CD)$, a cyclodextrin glucanotransferase(CGTase) producing Aspergillus sp. CC-2-1 was isolated from soil. The enzyme was purified and its enzymological characteristics were investigated. It was found that production of CGTase reached to the maximum when the wheat bran medium containing 0.1% albumin, 2% $(NH_4)_2S_2O_8$, 2% soluble starch and 0.2% $KH_2PO_4$ was cultured for 5 days at $37^{\circ}C$. The purity of CGTase was increased by 13.14 folds after DEAE-cellulose ion exchange chromatography and Sephadex G-100, G-150 gel filtration and the specific activity was 172.14 unit/mg. Purified enzyme was confirmed as a single band by the polyacrylamide gel electrophoresis. The molecular weight of CGTase was estimated to be 27,800 by Sephadex G-100 gel filtration and SDS-polyacrylamide gel electrophoresis. The optimum pH and temperature for the CGTase activity were 9.0 and $80^{\circ}C$, respectively. The enzyme was stable in pH $8.0{\sim}11.0$ at $60{\sim}80^{\circ}C$. The activity of purified enzyme was activated by $K^+,\;Cu^{2+}$ and $Zn^{2+}$. The activity of the CGTase was inhibited by the treatment with 2,4-dinitrophenol and iodine. The result suggests that the purified enzyme has phenolic hydroxyl group of tyrosine, histidine imidazole group and terminal amino group at active site. The reaction of this enzyme followed typical Michaelis-Menten kinetics with the $K_m$ value of 18.182 g/L with the $V_{max}$ of 188.68 ${\mu}mole/min$. The activation energy for the CGTase was calculated by Arrhenius equation was 1.548 kcal/mol.

  • PDF

Chemical Remediation and Recirculation Technologies of Wastewater from Metal-Contaminated Soil Washing (금속오염(金屬汚染) 토양세척(土壤洗滌) 폐수(廢水)의 화학적(化學的) 처리(處理)와 재순환(再循環) 기술(技術))

  • Lim, Mi-Hee;Abn, Ji-Whan
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.28-39
    • /
    • 2011
  • This review investigated theoretical principals and practical application examples on recirculation system of soil washing-wastewater treatment-treated water recycling. As for technologies which have attempted to remediating metals-contaminated soil in and around country, there are reactive barriers, encapsulation, solidification/stabilization, soil washing, and phytoremediation. Among those, in particular, this review covers soil washing technology which physicochemically removes contaminants from soils. The major drawbacks of this technology are to generate a large amount of wastewater which contains contaminants complexed with ligands of washing solution and needs additional treatment process. To solve these problems, many chemical treatment methods have been developed as follows: precipitation/coprecipitation, membrane filtration, adsorption treatment, ion exchange, and electrokinetic treatment. In the last part of the review, recent research and field application cases on soil washing wastewater treatment and recycling were introduced. Based on these integrated technologies, it could be achieved to solve the problem of soil washing wastewater and to enhance cost effective process by reducing total water resources use in soil washing process.