DOI QR코드

DOI QR Code

An Experimental Study on Filtration Efficiency of Sand Filter Layers to TSS and COD in Non-point Source Pollutant

분산형 빗물 저류조용 모래 여과층을 적용한 도심지 비점오염원의 TSS와 COD 정화효율에 대한 실험적 연구

  • 안재윤 (고려대학교 건축사회환경공학부) ;
  • 이동섭 (고려대학교 건축사회환경공학부) ;
  • 한신인 ((주)서영엔지니어링 상무) ;
  • 최항석 (고려대학교 건축사회환경공학부)
  • Received : 2014.01.02
  • Accepted : 2014.08.29
  • Published : 2014.10.01

Abstract

Prevalent construction of impermeable pavements in urban areas causes diverse water-related environmental issues, such as lowering ground water levels and shortage of water supply for the living. In order to resolve such problems, a rainwater reservoir can be an effective and useful solution. The rainwater reservoir facilitates the hydrologic cycle in urban areas by temporarily retaining precipitation-runoff within a shallow subsurface layer for later use in a dry season. However, in order to use the stored water of precipitation-runoff, non-point source pollutants mostly retained in initial rainfall should be removed before being stored in the reservoir. Therefore, the purification system to filter out the non-point source pollutants is essential for the rainwater reservoir. The conventional soil filtration technology is well known to be able to capture non-point source pollutants in a economical and efficient way. This study adopted a sand filter layer (SFL) as a non-point source pollutant removal system in the rainwater reservoir, and conducted a series of lab-scale chamber tests and field tests to evaluate the pollutant removal efficiency and applicability of SFL. During the laboratory chamber experiments, three types of SFL with the different grain size characteristics were compared in the chamber with a dimension of $20cm{\times}30cm{\times}60cm$. To evaluate performance of the reservoir systems, the concentration of the polluted water in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) were measured and compared. In addition, a reduction in hydraulic conductivity of SFL due to pollutant clogging was indirectly estimated. The optimum SFL selected through the laboratory chamber experiments was verified on the in-situ rainwater reservoir for field applicability.

도심지 불투수성 포장의 증가로 지하수위 저하, 생활용수 부족 등의 물과 관련된 다양한 환경문제가 점차 심화되고 있으며, 이를 해결하기 위해 빗물 저류조가 설치되어지고 있다. 빗물 저류조는 지반 저류층에 강우 유출수를 저장하여 향후 갈수기에 이용할 수 있어 도심지의 원활한 물순환에 도움이 된다. 그러나 도심지의 초기 강우는 다량의 비점오염물질을 포함하고 있으므로, 초기 강우를 빗물 저류조에 저류하기 전에 빗물에 포함된 오염물질을 정화하기 위한 시스템이 필요하다. 본 연구에서는 초기 강우의 오염물질 정화를 위해 경제성과 비점오염물질 제거효율 측면에서 우수한 토양여과기술을 적용한 빗물 저류조의 전처리시설인 모래 여과층에 대한 정화효율 및 적용성을 실내 시험과 현장 시험을 통해 평가하였다. 실내 시험은 $20cm{\times}30cm{\times}60cm$의 규격으로 제작된 챔버에 3종류의 각기 다른 모래 여과층을 조성한 후 인공 강우를 유입하는 과정으로 진행되었으며, 유출된 오염수의 TSS (총 부유물질)와 COD (화학적 산소요구량)를 측정하여 모래 여과층의 정화효율을 평가하였다. 또한 폐색 현상으로 인한 모래 여과층의 투수계수 변화를 간접적으로 평가하였다. 실내 시험을 통하여 비점오염물질 정화에 적합한 여과층을 제시하였으며, 이를 현장 빗물 저류조에 시험 시공하여 선정된 여과층의 적용성을 검증하였다.

Keywords

References

  1. Cho, K. W., Kim, T. G., Lee, B. H., Lee, S. B., Song, K. G. and Ahn, K. H. (2009a). "Performance evaluation of a double layer biofilter system to control urban road runoff (I)-system design-." Journal of Korean Society of Water and Wastewater, Vol. 23, No. 5, pp. 599-608 (in Korean).
  2. Cho, K. W., Song, K. G., Cho, J. W., Kim, T. G. and Ahn, K. H. (2009b). "Removal of nitrogen by a layered soil infiltration system during intermittent storm events." Chemosphere, Vol. 76, pp. 690-696. https://doi.org/10.1016/j.chemosphere.2009.03.025
  3. Han, M. Y., Kum, S. Y., Mun, J. S. and Kwak, D. G. (2012). "The effect of decentralized rainwater tank system on the reduction of peak runoff -A case study at M village-." Journal of Korea Water Resources Association, Vol. 45, No. 1, pp. 65-73 (in Korean). https://doi.org/10.3741/JKWRA.2012.45.1.65
  4. Hsieh, C. and Davis, A. P. (2005). "Evaluation and optimization of bioretention media for treatment of urban storm water runoff." J. of Environ. Engrg, Vol. 131, No. 11, pp. 1521-1531. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:11(1521)
  5. John, J. S. and Steven, G. B. (1997). "Partitioning and first flush of metals in urban roadway storm water." J. of Environ. Engrg, Vol. 123, No. 2, pp. 134-143. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:2(134)
  6. Kim, L. H. (2003). "Determination of event mean concentrations and first flush criteria in urban runoff." Environmental Engineering Research, Vol. 8, No. 4, pp. 163-176. https://doi.org/10.4491/eer.2003.8.4.163
  7. Michael, E. B., Lyn, B. I. Jr., Josheph, F. M. Jr. and Randall, J. C. (1998). "Characterization of highway runoff in Austin, Texas, area." J. of Eviron. Engrg, Vol. 124, No. 2, pp. 131-137.
  8. Pitt, R. and Barron, P. (1990). "Assessment of urban and industrial stormwater runoff toxicity and the evaluation/development of treatment for runoff toxicity abatement-phase I." U.S. EPA, Office of Research and Development, Edison, New Jersey.
  9. Pitt, R., Field, R., Lalor, M. and Brown, M. (1995). "Urban stormwater toxic pollutants: Assessment, Sources, and Treatability." Water Environ. Res, Vol. 67, No. 3, pp. 260-275. https://doi.org/10.2175/106143095X131466
  10. Roh, S. D., Lee, D. K. and Chun, Y. K. (2004). “A study on the early-stage storm runoff treatment for the reduction of non-point pollution materials on the road.” Journal of the Korean Society on Water Quality, Vol. 20, No. 5, pp. 525-533 (in Korean).
  11. Song, Y. W. and Rhee, S. K. (2012). "An experimental evaluation of clay minerals to remove non-point sources of contaminants in the urban runoff." Journal of the Korean Society of Road Engineers, Vol. 14, No. 1, pp. 55-61 (in Korean). https://doi.org/10.7855/IJHE.2012.14.1.055
  12. Torben, L., Kirsten, B. and Margit, R. A. (1998). "First flush effects in an urban catchment area in aalborg." Wat. Sci. Tech, Vol. 37, No. 1, pp. 251-257.

Cited by

  1. Removal of Suspended Solids from Stormwater Runoff Using a Fabric Filter System vol.37, pp.3, 2015, https://doi.org/10.4491/KSEE.2015.37.3.165