• Title/Summary/Keyword: soil enzymes

Search Result 232, Processing Time 0.024 seconds

The Effect of Agricultural Wastes on Rice Plant Growth (답토양(畓土壤)의 유기물(有機物) 시용효과(施用效果))

  • Lee, Sang-Kyu;Park, Jun-Kyu
    • Applied Biological Chemistry
    • /
    • v.27
    • /
    • pp.56-67
    • /
    • 1984
  • As in many other country, the use of organic matter in Korea has long history. Farmers understand the value of organic matter as the source of plant nutrient and soil improving agent in general. Since 50 years ago, the sources of organic matter in paddy soils were compost, rice and barly straw, green manure, animal waste, fish and beancake, etc.. Application of green manures such as vetch and chinese milk vetch showed no significant effect on the yield of brown rice in paddy soil. On the other hand, the effects of compost and rice straw showed more significant on the yield of brown rice in paddy soil. Application of rice straw in rice cultivation is commonly made at different times between harvest, early spring and several weeks before transplanting. Considering the suitable paddy soil for application of rice straw under well to moderately well drained soil, the yield was pronounced more than poorly drained soil. Based on laboratory and field experimants, application of rice straw promoted the decrease of oxidation-reduction potential in well to moderately well drained soil. This results to be enhanced the release of some mineral nutrients,. such as potassium, calcium, silicon, and increase of availability of soil phosphorus. In the field experiments, results obtained from nitrogen fraction on the immobilization-mineralization of the tracer nitrogen applied in paddy soil,the amount and index of organic nitrogen incoporated in soil was more pronounced in rice straw application than control. Rice straw and its transformation products incoporated in the soil, provided the inflow of energy necessary to maintain heterotrophic microbes activities. Rice straw and its transformation products, especially soluble carbohydrate, enhanced the population of free-living heterotrophic $N_2$ - fixing microbes. Moreover, rice straw and its transformation products in paddy soil, enhanced the activities of soil enzymes such as dehydrogenase and urease.

  • PDF

Isolation, Identification and Enzymatic Activity of Halotolerant and Halophilic Fungi from the Great Sebkha of Oran in Northwestern of Algeria

  • Chamekh, Rajaa;Deniel, Franck;Donot, Christelle;Jany, Jean-Luc;Nodet, Patrice;Belabid, Lakhder
    • Mycobiology
    • /
    • v.47 no.2
    • /
    • pp.230-241
    • /
    • 2019
  • The Great Sebkha of Oran is a closed depression located in northwestern of Algeria. Despite the ranking of this sebkha among the wetlands of global importance by Ramsar Convention in 2002, no studies on the fungal community in this area have been carried out. In our study, samples were collected from two different regions. The first region is characterized by halophilic vegetation and cereal crops and the second by a total absence of vegetation. The isolated strains were identified morphologically then by molecular analysis. The biotechnological interest of the strains was evaluated by testing their ability to grow at different concentration of NaCl and to produce extracellular enzymes (i.e., lipase, amylase, protease, and cellulase) on solid medium. The results showed that the soil of sebkha is alkaline, with the exception of the soil of cereal crops that is neutral, and extremely saline. In this work, the species Gymnoascus halophilus, Trichoderma gamsii, the two phytopathogenic fungi, Fusarium brachygibbosum and Penicillium allii, and the teleomorphic form of P. longicatenatum observed for the first time in this species, were isolated for the first time in Algeria. The halotolerance test revealed that the majority of the isolated are halotolerant. Wallemia sp. and two strains of G. halophilus are the only obligate halophilic strains. All strains are capable to secrete at least one of the four tested enzymes. The most interesting species presenting the highest enzymatic index were Aspergillus sp. strain A4, Chaetomium sp. strain H1, P. vinaceum, G. halophilus, Wallemia sp. and Ustilago cynodontis.

Study on bio-degradation of cigarette filter rods with filter materials (필터소재에 따른 담배필터의 생분해성 비교)

  • Ko Dongkyun;Kim Soo-Ho;Shin Chang-Ho;Lee Young-Taek;Kim Chung Ryul;Kim Jong-Yeol
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.75-82
    • /
    • 2005
  • This work investigated biodegradability for the cellulose acetate, carbon dual, paper and web used to cigarette filter materials by soil test. Also, because of demanded a lot of the time and effort in case of soil test, the possibility of biodegradation by enzyme was studied. The evaluation of degradation for the filter materials by soil test was examined with the naked eye, electron microscopy and weight loss. The biodegradability according to the filter materials was represented in the order of paper > web > carbon dual > cellulose acetate without relating to the evaluation methods. Experiment of biodegradability by the cellulase(E C 3.2.1.4, Trichoderma viride) among the several biodegradability enzymes was demanded reaction time of the $5\~10$ hours and represented the same result with that of soil test.

Comparisons of Isozyme Patterns in Pythium Species and Application to Pythium Systematics (Isozyme을 이용한 Pythium species의 비교 및 Pythium systematics에의 이용)

  • Lee, Youn-Su
    • The Korean Journal of Mycology
    • /
    • v.21 no.4
    • /
    • pp.293-300
    • /
    • 1993
  • For the enzymes AAT, GmDH, ME, GPI, LDH and IDH, nine, seven, four, nine, seven, and four different phenotypes, respectively, were observed. All six isolates of an unidentified sterile Pythium sp. isolated from field soil showed the same band positions for all six enzymes compared. These phenotypes were not similar to any of the known Pythium species. Two isolates of unknown Pythium species (145 and 299) showed the same band positions for all six enzymes. The phenotypes for all three unknown Pythium spp. were different from the other species in the experiment. Five isolates of P. heterothallicum showed the same band positions for all enzymes compared except one enzyme, lDH. Two isolates of P. torulosum showed the same band petitions for enzymes AAT, GmDH and ME, and three isolates of P. totulosum showed the same positions for enzymes GPI, LDH, and IDH. Single isolates of P. spinosum and P. irregulare showed the same band positions for enzymes AAT, GmDH and GPI. In conclusion, sterile types of Pythium species showed 100% similarities among themselves but did not show any similarity with all isolates of P. heterothallicum and P. spinosum isolate, and showed very low similarities with other isolates in general except with unknown Pythium isolate 306. Similarity levels between different species were low in general with few exceptions.

  • PDF

Environmental Factors and Bioremediation of Xenobiotics Using White Rot Fungi

  • Magan, Naresh;Fragoeiro, Silvia;Bastos, Catarina
    • Mycobiology
    • /
    • v.38 no.4
    • /
    • pp.238-248
    • /
    • 2010
  • This review provides background information on the importance of bioremediation approaches. It describes the roles of fungi, specifically white rot fungi, and their extracellular enzymes, laccases, ligninases, and peroxidises, in the degradation of xenobiotic compounds such as single and mixtures of pesticides. We discuss the importance of abiotic factors such as water potential, temperature, and pH stress when considering an environmental screening approach, and examples are provided of the differential effect of white rot fungi on the degradation of single and mixtures of pesticides using fungi such as Trametes versicolor and Phanerochaete chrysosporium. We also explore the formulation and delivery of fungal bioremedial inoculants to terrestrial ecosystems as well as the use of spent mushroom compost as an approach. Future areas for research and potential exploitation of new techniques are also considered.

Antioxidant Enzymes in Postpartum Anoestrus Buffaloes Supplemented with Vitamin E and Selenium

  • Anita, Anita;Singha, S.P.S.;Dhillon, K.S.;Nayyar, Shashi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.5
    • /
    • pp.608-611
    • /
    • 2004
  • The 15 buffaloes were divided into three groups, viz. group 1: normal cyclic buffaloes; group 2: postpartum anoestrus buffaloes and group 3: post partum anoestrus buffaloes supplemented with intramuscular injections of Vit. E.-care Se containing 500 mg $\alpha$-tocopheryl acetate and 15 mg selenium at weekly intervals for two months. The postpartum anoestrus buffaloes had significantly higher levels of erythrocytic lipid peroxidation, superoxide dismutase and glucose-6 phosphate dehydrogenase activities but lower glutathione peroxidase activity as compared to normal cyclic buffaloes. The supplementation of vitamin E and selenium lowered the level of erythrocytic lipid peroxidation, superoxide dismutase and glucose-6 phosphate dehydrogenase activities but it had no effect on whole blood selenium and erythrocytic gluathione peroxidase activity. All the animals in group 3 became cyclic and showed 60% conception rate.

효모 세포벽 분해효소 생산균의 탐색 및 효소생산 최적조건의 조사

  • Cha, Seong-Kwan;Choi, Hea-Suk;Kim, Wang-June;Yoon, Suk-Hoo;Kim, Young-Bae
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.2
    • /
    • pp.143-148
    • /
    • 1996
  • Thousand actinomycetes and 50 soil samples were used for the isolation of microorganisms producing yeast cell wall lytic enzymes. Among 493 strains producing large clear zones on autolysed washed yeast (AWY), 117 strains were selected on living yeast cell agar plates. With the method of lytic activity, one strain (St-1702) was selected, which was temporarily identified as Streptomyces eurythermus. The optimal condition for enzyme production of this strain was partially determined as follows: incubation of the strain for 3 days at 30$\circ$C in the medium containing 2% freeze dried yeast cell, 1% glucose, 1% K$_{2}$HPO$_{4}$, 0.01% MgSO$_{4}$'7H$_{2}$O, 0.5% peptone, and 0.2% (NH$_{4}$)$_{2}$CO$_{3}$ with pH 7.0. The protoplast formation of yeast by using the enzyme produced by this strain was compared with commercial enzymes.

  • PDF

Are Bound Residues a Solution for Soil Decontamination\ulcorner

  • Bollag, Jean-Marc
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.10a
    • /
    • pp.111-124
    • /
    • 2003
  • Processes that cause immobilization of contaminants in soil are of great environmental importance because they may lead to a considerable reduction in the bioavailability of contaminants and they may restrict their leaching into groundwater. Previous investigations demonstrated that pollutants can be bound to soil constituents by either chemical or physical interactions. From an environmental point of view, chemical interactions are preferred, because they frequently lead to the formation of strong covalent bonds that are difficult to disrupt by microbial activity or chemical treatments. Humic substances resulting from lignin decomposition appear to be the major binding ligands involved in the incorporation of contaminants into the soil matrix through stable chemical linkages. Chemical bonds may be formed through oxidative coupling reactions catalyzed either biologically by polyphenol oxidases and peroxidases, or abiotically by certain clays and metal oxides. These naturally occurring processes are believed to result in the detoxification of contaminants. While indigenous enzymes are usually not likely to provide satisfactory decontamination of polluted sites, amending soil with enzymes derived from specific microbial cultures or plant materials may enhance incorporation processes. The catalytic effect of enzymes was evaluated by determining the extent of contaminants binding to humic material, and - whenever possible - by structural analyses of the resulting complexes. Previous research on xenobiotic immobilization was mostly based on the application of $^{14}$ C-labeled contaminants and radiocounting. Several recent studies demonstrated, however, that the evaluation of binding can be better achieved by applying $^{13}$ C-, $^{15}$ N- or $^{19}$ F-labeled xenobiotics in combination with $^{13}$ C-, $^{15}$ N- or $^{19}$ F-NMR spectroscopy. The rationale behind the NMR approach was that any binding-related modification in the initial arrangement of the labeled atoms automatically induced changes in the position of the corresponding signals in the NMR spectra. The delocalization of the signals exhibited a high degree of specificity, indicating whether or not covalent binding had occurred and, if so, what type of covalent bond had been formed. The results obtained confirmed the view that binding of contaminants to soil organic matter has important environmental consequences. In particular, now it is more evident than ever that as a result of binding, (a) the amount of contaminants available to interact with the biota is reduced; (b) the complexed products are less toxic than their parent compounds; and (c) groundwater pollution is reduced because of restricted contaminant mobility.

  • PDF

Identification and Characterization of Microbial Community in the Coelomic Fluid of Earthworm (Aporrectodea molleri)

  • Yakkou, Lamia;Houida, Sofia;Dominguez, Jorge;Raouane, Mohammed;Amghar, Souad;Harti, Abdellatif El
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.391-402
    • /
    • 2021
  • Earthworms play an important role in soil fertilization, interacting continually with microorganisms. This study aims to demonstrate the existence of beneficial microorganisms living in the earthworm's immune system, the coelomic fluid. To achieve this goal, a molecular identification technique was performed, using cytochrome c oxidase I (COI) barcoding to identify abundant endogenic earthworms inhabiting the temperate zone of Rabat, Morocco. Then, 16S rDNA and ITS sequencing techniques were adopted for bacteria and fungi, respectively. Biochemical analysis, showed the ability of bacteria to produce characteristic enzymes and utilize substrates. Qualitative screening of plant growth-promoting traits, including nitrogen fixation, phosphate and potassium solubilization, and indole acetic acid (IAA) production, was also performed. The result of mitochondrial COI barcoding allowed the identification of the earthworm species Aporrectodea molleri. Phenotypic and genotypic studies of the sixteen isolated bacteria and the two isolated fungi showed that they belong to the Pseudomonas, Aeromonas, Bacillus, Buttiauxella, Enterobacter, Pantoea, and Raoultella, and the Penicillium genera, respectively. Most of the isolated bacteria in the coelomic fluid showed the ability to produce β-glucosidase, β-glucosaminidase, Glutamyl-β-naphthylamidase, and aminopeptidase enzymes, utilizing substrates like aliphatic thiol, sorbitol, and fatty acid ester. Furthermore, three bacteria were able to fix nitrogen, solubilize phosphate and potassium, and produce IAA. This initial study demonstrated that despite the immune property of earthworms' coelomic fluid, it harbors beneficial microorganisms. Thus, the presence of resistant microorganisms in the earthworm's immune system highlights a possible selection process at the coelomic fluid level.

Phosphate solubilization by phosphate solubilizing microorganisms: insight into the mechanisms

  • Buddhi Charana, Walpola;Kodithuwakku Kankanange Indika Upali, Arunakumara;Min Ho, Yoon
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.463-481
    • /
    • 2022
  • Phosphorous (P) is considered to be one of the key essential elements demanded by crop plants. Approximately 70 - 90% of phosphatic fertilizers applied to crops are fixed in soil as Ca, Fe, and Al metal cations, which are insoluble and thus not readily available for plant uptake. Therefore, most soils are deficient in plant available P. This is usually rectified by applying phosphate fertilizers continuously, although this is not economically viable or environmentally acceptable. The present paper reviews the mechanisms involved with phosphate solubilization and mineralization by phosphate solubilizing microorganisms (PSMs) with the associated factors that determine the success. PSMs are effectively involved in mediating the bioavailability of soil P. Their contribution includes mineralization of organic P solubilization of inorganic P minerals, and storing sizable amounts of P in biomass through different mechanisms such as the production of organic and inorganic acids, H2S, siderophores, exopolysaccharides, and production of enzymes such as phosphatases, phytase, and phosphonatases/C-P lyases, which are capable of chelating the metal ions, forming complexes, and making plant available P. PSMs manifest a wide range of metabolic functions in different environments, resulting in significantly higher plant growth, enhanced soil properties, and increased biological activities. Therefore, development of bio-inoculants with efficient novel PSM strains and further investigations on exploring such strains from diverse ecological niches with multifunctional plant-growth-promoting traits are needed.