• Title/Summary/Keyword: soil damage

Search Result 965, Processing Time 0.029 seconds

Location Environment and Vegetation Structure of the Aconitum austrokoreense Habitat (세뿔투구꽃 서식지의 입지환경 및 식생구조)

  • Cho, Seon-Hee;Lee, Kye-Han
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.2
    • /
    • pp.165-178
    • /
    • 2021
  • Owing to the lack of consistent research on endangered plant species in Korea, there are insufficient data to preservespecies and expand habitats. This study analyzed the preferred habitat and threats to the survival of Aconitum austrokoreense, found on Baekwun Mountain in Gurye-gun, Gwangyang-si, Jeollanam-do Province, and classified as a level two endangered wild plant by the Ministry of Environment, by investigating major environmental factors such as climate, location, soil, and stand structure. By examining five selected sites inhabited by Aconitum austrokoreense on BaekwunMountain, this study found that the habitat had an altitude of 420 to 675 m above sea level and showed a northeast tendency, spreading over a range of inclination angles between 15° and 37°. The average number of plants across the five sites was 156. Site 4 (550 m) had the highest density of 372 plants, with an average height of 0.6 m. The average soil moisture and relative light intensity were 20.48% and 7.34%, respectively. Layer soil was presumed to be sandy loam, characterized by high sand content and good drainage. The habitat had average soil pH of 5.2, average organic matter of 16.46%, average nitrogen of 0.86%, average available phosphate of 11.86 mg/kg, average electrical conductivity of 0.44 dS/m, and average cation exchange capacity of 37.04 cmolc/kg. The total carbon in soil averaged 10.68%. From the analysis of the vegetation structure of sites inhabited by Aconitum austrokoreense, the dominant populations were Pinus koraiensis and Lindera erythrocarpa in Site 1, Magnolia obovata and Carpinus laxiflora in Site 2, Zelkova serrate and Quercus variabilis in Site 3, Staphylea bumalda and Lindera erythrocarpa in Site 4, and Morus bombycis,Styrax japonicus, and Carpinus laxiflora in Site 5. With most habitats located near trails and sap collection sites of Acer pictum, the species were exposed to artificial damage and interference threats.

Study on the Characteristics of the Slow-moving Landslide (Landcreep) in the Sanji Valley of Jinju (진주시 산지골 유역내 땅밀림지 특성에 관한 연구)

  • Park, Jae-Hyeon;Kim, Seon Yeop;Lee, Sang Hyeon;Kang, Han Byoel
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.115-124
    • /
    • 2022
  • This study was conducted to obtain basic data that could help prevent damage caused by slow-moving landslides (land-creep). Specifically, the geological, topographic, and physical characteristics of land-creep were analyzed in Jiphyeon-myeon, Jinju-si. The first and second analyzed land-creeps occurred in 1982 and 2019, respectively. The area damaged in the second land-creep was about 11.5-fold larger than that damaged in the first land-creep. The dominant constituent rock in the land-creep area was sedimentary rock, which seems to be weakly resistant to weathering. The areas that collapsed due to land-creep were related to the presence of separated rocks between the bedding plane in the estimated activity surface over the slope direction and the vertically developed joint surface. Thus, surface water and soil debris were introduced through the gaps of separated rocks. Additionally, the areas collapsed due to the combination of the bedding plane and joint surface shale and sandstone showed an onion structure of weathered outcrop from the edge to inner part caused by weathering from ground water. Consequently, core stones were formed. The study area was a typical area of land-creep in a mountain caused by ground water. Land-creep was classified into convex areas of colluvial land-creep. The landslide-risk rating in the study area was classified into three and five classes. The flow of ground water moved to the northeast and coincided with the direction of the collapse. Soil bulk density in the collapsed area was lower than that in ridge area, which was rarely affected by land-creep. Thus, soil bulk density was affected by the soil disturbance in the collapsed area.

The selection of Post-emergence Herbicides to Control of Poa annua in Kentucky Bluegrass (Kentucky bluegrass 내 새포아풀 방제를 위한 경엽처리제 선발)

  • Hong, Beom-Seok;Tae, Hyun-Sook
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.76-81
    • /
    • 2013
  • This study was performed to find the effective post-emergence herbicides to control of Poa annua that has already emerged from the soil in Kentucky bluegrass. A total of 8 treatments consist of various post-emergence herbicides applied at recommended concentration or lower concentration than recommended concentration to prevent Kentucky bluegrass injury in this study. Methiozolin showed the least injury in Kentucky bluegrass during 40 days after treatments and there were no footprints by methiozolin in creeping bentgrass green during 20 days. However, Poa annua control was 60.4%, which was less than those of other 7 treatments in this study. Both of asulam sodium and iodosulfuron plus asulam sodium exhibited the higher Poa annua control of 81.7% and 82.2% respectively without serious injury in Kentucky bluegrass during 40 days, and they showed a slight footprints damage in creeping bentgrass green. On the other hand, critical Kentucky bluegrass injuries and the vivid and numerous footprints were occurred in treatments of trifloxysulfuron-sodium, foramsulfuron, rimsulfuron and flazasulfuron, even though they were applied with only 1/4 of recommended concentration. Methiozolin is available to reduce gradually Poa annua population on Kentucky bluegrass without severe turfgrass damage. Asulam sodium or iodosulfuron plus asulam sodium could be useful to remove Poa annua by spot treatment but it is prohibited to spray directly on green even spot.

Designing a Decentralized Stormwater Management Corridor for a Flood-Prone Watershed using Surface Runoff Analysis (지표유출수 분석을 통한 상습침수유역의 분산식 우수관리통로 설계)

  • Lee, Seul;Lee, Yumi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.13-26
    • /
    • 2015
  • Many urban areas in Korea suffer from repeated flood damage during intensive rainfall due to an increase in impervious areas caused by rapid urbanization and deteriorating sewage systems. A centralized stormwater management system has caused severe flood damage in an area that has proven unable to accommodate recent climate change and a rise in precipitation. Most flooding prevention projects that have been recently implemented focus on increasing drainage system capacity by expanding the size of sewer pipes and adding pumping stations in downstream areas. However, such measures fail to provide sustainable solutions since they cannot solve fundamental problems to reduce surface runoff caused by urbanization across the watershed. A decentralized stormwater management system is needed that can minimize surface runoff and maximize localized retention capacity, while maintaining the existing drainage systems. This study proposes a stormwater management corridor for the flood-prone watershed in the city of Dongducheon. The corridor would connect the upstream, midstream, and downstream zones using various methods for reducing stormwater runoff. The research analyzed surface runoff patterns generated across the watershed using the Modified Rational Method considering the natural topography, land cover, and soil characteristics of each sub-watershed, as well as the urban fabric and land use. The expected effects of the design were verified by the retainable volume of stormwater runoff as based on the design application. The results suggest that an open space network serve as an urban green infrastructure, potentially expanding the functional and scenic values of the landscape. This method is more sustainable and effective than an engineering-based one, and can be applied to sustainable planning and management in flood-prone urban areas.

Survey on Occurrence and Management of Disease and Pests in Organic Peach Orchards (유기재배 복숭아 과원의 관리현황 및 병해충 발생 실태)

  • Kim, Min-Gi;An, Min-Sil;Park, Jong-Ho;Lee, Cho-Rong;Lee, Sang-Beom;Park, Kwang-Lai;Hong, Seung-Gil
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.3
    • /
    • pp.603-617
    • /
    • 2017
  • The occurrence and management of disease and pests in six organic peach orchards were surveyed from March 2015 to March 2017. In this period, the number of certified organic and non-chemical peach farms increased to 65.5% and 31.7%, respectively. Certified organic peach farms were selected based on more than $4,000m^2$ of cultivation area and three tons of production, and their cultivation status was examined. All of the farms were either cultivated green manure crop or sod, and limited vegetation control to a minimum. For the management of soil nutrients, many farmers used livestock manure, oilcake and self-manufacturing liquid fertilizer. It was surveyed that bordeaux mixture, lime sulfur, pheromone for mating disruption of moths and plant extract were used for disease and pest control. The damage caused by the pests and diseases were 31.6% and 24.1%, respectively. The oriental fruit moth showed the highest damage rate (13.5%) in the organic peach orchards, followed by the brown rot (13.0%), peach fruit moth (7.3%) and bacterial shot hole (7.3%).

Development of the 3D simulation for disaster prevention in the downtown soil erosion (I) (도심지 토사재해 예방을 위한 3차원 시뮬레이션 개발(I))

  • Shin, Bong Jin;Youn, Sang Ho;Lee, Gi Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.408-417
    • /
    • 2016
  • The frequent regional torrential or heavy rain and typhoon mostly caused by climate change has resulted in sediment disasters particularly in mountainous or hilly areas. More than 65% of South Korea is mountainous and development and rapid urbanization has brought lots of steep sloping industrial complexes, which are adjacent to cities. Such continuous urbanization and industrialization can result in an increase in serious damage to those places. Korea has very high population density so sediment disaster could result in a tremendous loss of property and life. A recent 10-year (2001~2010) study of the average annual loss shows 68 casualties and property loss of 1.7044 trillion Won(?), which indicates a 20% and 25% decrease for both life and property, respectively, but urban areas are experiencing increasing damage. In this paper, a comprehensive simulator composed by references, analyses, and the recent technologies was applied to visualize the scale of the damaged Woomyeon-san (Mt.) and verify the performance of the simulator.

A Study on the Possibility of Malondialdehyde(MDA) as Indicator of Forest Therapy Effectiveness (산림치유 효과 측정 지표로써 과산화지질의 활용가능성 분석)

  • Jeong, Mi-Ae;Park, Sujin;Park, Chan-Woo;Lee, Jeong-Hee;Kwon, Jino
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.530-536
    • /
    • 2013
  • This study aimed to analyze and compare results from psychological relaxations by using profile of mood state (POMS) and Malondialdehyde (MDA) level as a scale of oxidative damage before and after walking in the forest and on the street. 29 participations (15 men and 14 women) walked in the forest and on the street for 30 minutes of each for two days. The participations filled a questionnaire for POMS and conducted an heart rate variability test, oxidative damage test (MDA as biological marker through a urine test) before and after walking. To compare the psychological states after walking in the two difference places, walking in the forest showed statistically more meaningful results in the section of tension, depression, anger, fatigue, confuse and total mood disturbance (p<0.01) than walking on the street. According to the MDA results, a concentration of MDA showed significant increase after walking on the street (p=0.014). On the contrary to this, a concentration of MDA tended to decrease after walking in the forest (p=0.076). The study showed that the psychological states were more stable and oxidative damages were more decreasing after walking in the forest than walking on the street. In the conclusion, MDA would be biological indicator for assessing the effect of alleviation on the oxidative stress after walking in the forest.

Physiological Tolerance of Native Tree Species in Abandoned Coal Mine Spoils (탄광 폐석지내 자생 수종의 생리적 피해 및 내성)

  • 이재천;한심희;장석성;김판기;허재선;염규진
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.3
    • /
    • pp.172-178
    • /
    • 2003
  • This study was conducted to assess the physiological tolerance of native tree species for successful restoration and revegetation of abandoned coal-mine spoils. Study sites were two coal-mine spoils (Sododong and Ssarijae) in Taebaek, Kangwon Province, Korea. Five individuals of Betula costata and of B. schmidtii were analyzed for malondialdehyde (MDA) and hydrogen peroxide ($H_2O$$_2$) content, nitrate reductase (NR) and superoxide dismutase (SOD) activity, and for carbohydrate concentration in the leaves. Trees in the abandoned coal-mine spoils were influenced by deficiencies expressed by MDA and $H_2O$$_2$ content in the leaves of two species being higher at the coal-mine spoils than in the surrounding forest. Low NR activity indirectly represented nitrogen deficiency in the soil of the coal-mine spoils; an unmanageable SOD activity implied that tolerant functions didn't net against a certain stress of the coal-mine spoils. Decreased glucose and increased starch concentration especially showed the inhibition of the carbohydrate metabolism by inadequate factors. Consequently, low nitrogen content in the real-mine soils might increase damage in trees as a result of inhibiting the expression of tolerance mechanisms against stress. Therefore, trees in coal-mine spoils need ample nitrogen to use as a metabolic energy source in order to prevent damage and increase tolerance against stress.

A Study on the Type of Pavement Base and Drainage in Mountain Road for the Prevention of the Pavement Damage by Uplift Water Pressure (수치해석을 활용한 산지도로의 상향침투수압으로 인한 포장파손방지를 위한 포장기층종류 및 배수형태의 고찰)

  • Lim, Young-Kyu;Yune, Chan-Young;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Construction of road closed to mountains is inevitable in Korea because the mountainous region in Korea is more than 70% in area. Recently, due to global warming, typhoons or heavy rainfalls frequently occur, and accordingly, mountain roads are seriously damaged by landslides, debris flows, and uplift pressure below pavement. in this study, damage on pavement by uplift pressure was investigated. Various influencing factors such as slope angle, reinforcement of slope surface, thickness of soil cover underlain by rock, and types of drainage system were considered to evaluate uplift pressure acting on the bottom of pavement. Raising of water table up to the surface of slope may depend on the duration and intensity of rainfall. It shows that the installation of subdrain can reduce the uplift water pressure. Therefore, It is concluded that the use of subdrain system is effective to decrease uplift pressure and cement treated base is more endurable than typical crushed-stone base.

Evaluating Stability and Functionality of Hybrid Erosion Control Dam for Reducing Debris Flow Damage in Forested Catchment Nearby Urban Area (도시생활권의 토석류 피해 저감을 위한 복합형 사방댐의 안정성 및 기능성 평가)

  • Kim, Kidae;Kim, Dongyeob;Seo, Junpyo;Lee, Changwoo;Woo, Choongshik;Kang, Minjeng;Jeong, Sangseom;Lee, Dongkyun
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.1
    • /
    • pp.59-70
    • /
    • 2018
  • The objective of this study was to develop erosion control dam for preventing disaster in consideration of characteristics of forested catchment near urban area, and to assess its stability and functionality to see its practicability in the field. Two types of hybrid erosion control dams were developed including debris flow prevention dam by using pillar and float board screen type and debris flow control dam by using groyne. Also, review about their static (sliding, overturning, bearing capacity) and dynamic (member force) stability was carried out. According to the result, most of the assessed items met standard safety level although there were some cases where assessed items were short of stability criteria against impact. Also, after miniature flume experiments based on the developed erosion control dam to prove structure function (material catch, deposit), it turned out the dam decreased flow sediment amount and velocity while increasing sediment-capturing capacity by 3.5 times on average compared to the one controlled without erosion control dam. When function of erosion control dam for forested catchment near urban area is quantified based on future flume experiments in a variety of conditions, the dams can be practically used in the urban area, contribution to effectively reducing debris flow damage.