• Title/Summary/Keyword: soil damage

Search Result 965, Processing Time 0.028 seconds

Carrying Capacity Estimation and Management Planning of the Seonjeong Royal Tomb(I) -Soil Environment and Vegetation Analysis- (선정릉의 적정수용능력 추정 및 관리방안(I) -토양환경 및 식생분석-)

  • 이경재;오구균;권영선
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.14 no.3
    • /
    • pp.33-45
    • /
    • 1987
  • The Seonjeong royal tomb is one of many historic sites in and around Seoul city and its natural environment and landscape have born damaged seriously by heavy use. So conservation planning with an estimation of reasonable carrying capacity shall be required In aspect of not only historic site conservation, but also urban forest and nature park management. Eight sites were sampled with clumped sampling method during July of 1986 and five quadrats were examined in each site. Environmental factors, actual vegetation, and environmental impact grade were investigated in field and vegetational structure was analyzed by estimation of importance value, species diversity, similarity index, DBH class distribution, etc. The result of this study can be summarized as follows. 1. Damage on soil and vegetation of middle and lower layer increased according to amount of users'impact. 2. Semi - natural vegetation covered 63% of the total area(22.2 ha) and its major species were Pinus densiflora, Quercus aliena, Q mongolica, Sorbus alnifolia, etc. Pinus densiflora was a dominant species in heavy impact area. 3. Environmental impact grade 3, 4 and 5 area covered 51% of the seminatural vegetation, Especially, the area of impact grade 4 and 5 should be restored because self-refair seemed to be impossible. 4. The semi-natural vegetation was classified with four plant communities; two P.densiflora comm., Q. mongolica-P. densiflora comm. and Q. aliena comm. One of the P. densifolra comm. was destroyed seriously with no younger trees in middle and lower layer by overuse impact and would be bareland soon. But Q. aliena comm.in light impact area showed just completion of plant succession from P. densiflora comm.

  • PDF

Investigation of Subsurface Deformations for the Shallow Tunnel In A Granular Mass Using Two-Dimensional Laboratory Model Test and Numerical Analysis (2차원 실내모형실험과 수치해석을 이용한 사질토 지반의 얕은 터널에 대한 지중변형에 대한 규명)

  • Lee, Yong-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.219-228
    • /
    • 2006
  • In urban areas, tunnelling induced ground deformations, particularly ground settlements should be considered in order to minimize the damage of adjacent structures. Therefore, an appropriate monitoring system for the tunnel construction should be setup at the planning or design stage. A number of studies on ground settlements due to tunnelling in soft ground have been carried out so far. However, most studies have focused on clay soil rather than sand soil. In particular, a few studies on behaviour of subsurface deformations in granular material have been reported. In this study, two-dimensional laboratory model test with aluminium rods regarded as continuum granular material and close range photogrammetric technique, and numerical analysis were carried out in order to identify the behaviour of subsurface deformations due to shallow tunnelling. Direction and magnitude of displacement vectors from the model test was identical to the numerical analysis. In particular, the vector direction was appeared to be toward a point below the tunnel invert level. A narrow 'chimney or tulip like' pattern of vertical displacement was confirmed by both the model test and numerical analysis. This is consistent with the field data. In addition to the qualitative comparison, the quantitative comparison of subsurface settlements according to 2D volume loss showed good agreement between the model test and numerical analysis. Therefore, close range photogrammetric technique applied in the model test may be used to validate the result from the continuum numerical analysis.

  • PDF

Effect of Pig Manure Compost or Sucrose Application on Recovering Chinese Cabbage from Ammonium Toxicity

  • Ku, Hyun-Hwoi;Kim, Seung-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.3
    • /
    • pp.282-286
    • /
    • 2016
  • This study was carried out to evaluate the effect of application of urea and combination of urea and pig manure compost (PMC) on the occurrence of and the recovery from ammonium ($NH_4{^+}$) toxicity in Chinese cabbage. To identify $NH_4{^+}$ toxicity of the crop four levels of urea at 0, 160, 320, and $480kg\;N\;ha^{-1}$ were applied, in addition, three levels of PMC at 10, 20, and $40M/T\;ha^{-1}$ was also applied with urea $320kg\;ha^{-1}$. For recovery $NH_4{^+}$ toxicity, six levels of sucrose were treated at the amount of 0, 600, 1,200, 1,800, 2,400, and $3,000kg\;C\;ha^{-1}$ at each level of combining treatments of urea and PMC. Our results showed that $NH_4{^+}$ toxicity was occurred at every urea application of $320kg\;N\;ha^{-1}$ regardless of PMC applied to the soils because $NH_4{^+}$ contents in the soils were more than $155mg\;kg^{-1}$ which was found to be the critical level to damage crop growth at 2 days after transplanting (DAT) in this experiment, the more sucrose was applied up to $1,800kg\;C\;ha^{-1}$ for the plants damaged by ammonium toxicity occurred at $320kg\;N\;ha^{-1}$, the greater extents recover the plants from the toxicity. PMC showed the similar effect with sucrose on recovering Chinese cabbage plants from $NH_4{^+}$ toxicity at 30 DAT.

Case Studies on Ground Improvement by High Pressure Jet Grouting(II) Effect on the Ground Reinforcement and Cut off of Ground Water Behind Temporary Retaining Walls (고압분사주입공법에 의한 지반개량사례연구(II) -흙막이벽 배면지반보강 및 차수효과)

  • Yun, Jung-Man;Hong, Won-Pyo;Jeong, Hyeong-Yong
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.5-16
    • /
    • 1996
  • When braced excavation with temporary retaining wall installation, is performed in loose sand with high ground water level boiling may be induced and considerable damage on the excavation works and structures in the vicinity can take place. Recently, for the purpose of reinforcement of ground and cut-off of ground water behind the temporary retaining wall, high pressure jet grouting is widely used. The purpose of this paper is to investigate the effects of jet grouting on ground reinforcement and cut -off of the ground water behind temporary retaining walls for braced excavation. A series of both laboratory and field tests has been performed. The test results show that high pressure jet grouting has sufficient effects on reinforcement of stiffness of ground and retaining wall. The permeability of the improved ground was 10-f_ 10-3cm l s smaller than those of the original ground. Therefore, the effect on cut off of ground water behind temporary retaining walls could be improved by high pressure jet grouting method.

  • PDF

Nature of Cold Injury and Resistance in Wheat and Barley (맥류의 한해와 내동성에 관하여)

  • 남윤일;연규복;구본철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.96-114
    • /
    • 1989
  • There are several meterorolgical stresses in the winter cereal crops. Among these stresses, cold injury is one of the most important stresses for wheat and barley production in Korea. The reduction in grain yield of the wheat and barley due to cold injury has occurred almost every year in Korea. The objective of the study was to get the basic information in relation to the cold injury and to detect the method minimizing the damage of cold injury. When the air temperature was the ranges of -13$^{\circ}C$ to -15$^{\circ}C$, the soil temperature at the crown part of the plant was very stable, whereas in the ranges of -2$^{\circ}C$ to -3$^{\circ}C$ the soil surface temperature was more unstable and cold than air and subterranean temperatures. The different parts of the plant in wheat and barley possess the different levels of cold hardiness. In comparison to the cold hardiness of plant parts, the leaf and crown are the less sensitive to cold injury than root and vascular transitional zone. The type and extent of stress is determined by the redistribution pattern of water during freezing. These types from freezing processes were three types: a) Equilibrium freezing pattern b) Non -equilibrium freezing pattern, c) Non-equilibrium freezing pattern typical of tender tissues. Cold hardiness in wheat plants were more harder than barley plants at vegitative stage, but inverted at the reproductive stage. Injuries by low temperature during the seasons of barley cultivation in Korea were occured mainly in four stage; in the first and third stage, frost injury occurs, the second stage, freezing injury, and the fourth stage, chilling injury.

  • PDF

Studies on Rhizina Root Rot Disease of Pinus densiflora : Physiological Characteristics and Pathogenicity of Rhizina undulata (소나무 리지나뿌리썩음병(病)에 관(關)한 연구(硏究) : Rhizina undulata의 생리적(生理的) 특성(特性) 및 병원성(病原性))

  • Lee, Sang Yong;Kim, Wan Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.3
    • /
    • pp.322-329
    • /
    • 1990
  • A group of Pinus densiflora trees attacked by Rhizina root rot were observed at Kangnung. Diseased roots are characterized by rot patches, radial rot traces or formation of adhesive soil masses. The damage has proceeded about 6m per annum, and the pathogen in the infected soil was detected by trap logs. Ascospores of Rhizina undulata was germinated by heat shock at $37^{\circ}C$ for 24 hours or at $40^{\circ}C$ for 17 hours. The mycerial growth was optimum on PDA medium at $25-30^{\circ}C$and pH 5.6-6.3. Coniferous trees were more susceptible than non-coniferous trees in inoculation test in vitro.

  • PDF

Energy Demand in Steel Structures with Buckling Restrained Braces (좌굴이 방지된 가새가 설치된 철골조 건물의 에너지 요구량)

  • 최현훈;김진구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.29-37
    • /
    • 2003
  • In this study, a story-wise distribution of hysteretic energy in steel moment resisting framse(MRF), buckling restrained braced frames(BRBF), and hinge-connected framed structures with buckling restrained braces(HBRBF) subjected to various earthquake ground excitations was investigated. Sixty earthquake ground motions recorded in different soil conditions were used to compute the energy demand in model structure. According to analysis results, the hysteretic energy in MRF and BRBF turned out to be the maximum at the base and monotonically diminishes with increasing height. However the story-wise distribution of hysteretic energy in HBRBF was relatively uniform over the height of the structure. In this case damage is not concentrated in a single story, and therefore it is considered to be more desirable than other systems. The story-wise energy distribution pattern under three different soil types turned out to be approximately the same.

A Study on Simulation of Cavity and Relaxation Zone Using Laboratory Model Test and Discrete Element Method (실내모형실험과 개별요소법을 이용한 지반 공동 및 이완영역 모사에 관한 연구)

  • Kim, Joo-Bong;You, Seung-Kyong;Han, Jung-Geun;Hong, Gi-Gwon;Park, Jong-Beom
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.11-21
    • /
    • 2017
  • Ground subsidence mainly occurs due to the soil wash-away caused by cracked sewer pipes. It is necessary to understand the behavior surrounding soils with the formation of cavity and relaxation zone to set up counterplan. In this paper, a series of laboratory model tests and numerical analyses (Discrete Element Method) were performed to investigate the ground subsidence mechanism due to sewer pipe damage. For model tests, aluminum rod and trap door were used to simulate the behavior of model ground. Test results were compared with the numerical analyses conducted under the same boundary conditions with model tests. From this study, it was investigated the shape and size of cavity and relaxation zone due to the soil wash-away and a void ratio distribution of surrounding soils with relaxation properties.

Environmental Analysis in Asian Dust Source Region Using Satellite Remotely Sensed Data

  • Kyung, Hye-Mee;Kim, Young-Seup;Kim, Sang-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.223-231
    • /
    • 2003
  • With the negative influences and damage from Asian dust increasing, it's getting important to investigate the climate and soil condition of the source region of Asian dust. There is a high possibility that the desertification and the drastic decrease of plants in China and Mongolia make worse the situation (bad effects of Asian Dust). To detect the movement of Asian dust caused by air circulation, we need to watch the state of the source region to get useful information for the prevention of the dust pollution, and to predict what part of China will become the source region. Therefore, using TOMS aerosol index data, NCEP reanalysis data that is Remote Sensing data from 1981 to 2000 (except 1993~1996, 4 years), for 16 years, examined the relation between the dust occurrence and weather elements. Dust occurrence appeared much in spring season from March to May in study areas. It had a dry climate during that season as follows : relative humidity about 20~40%, temperature about -5~5$^{\circ}C$, precipitation about 33-180 mm, wind speed about 4-10 ms-1. Dust occurrence and weather element annual change in study areas decreased gradually till 1990, but in Gobi desert the incidence of dust occurrence increased since 1997. As a result, found out that the more the precipitation, the less dust occurrence, because the precipitation and surface wind speed had a direct influence on the soil of the source region of dust.

A Geophysical Study on Site Characteristics of the Western Pagoda of the Mireuksa Site, Iksan, Korea (익산미륵사지 지반특성에 대한 지구물리학적 연구)

  • Je-Ra-
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • A number of tangible cultural properties have been left to suffering damage without any scientific conservation or maintenance. We conducted nondestructive geophysical explorations around the Western pagoda of the Iksan Mireuksa Temple for the purpose of preparing the counterplan of its conservation and maintenance and of utilizing the geophysical information for the design of repair. Geophysical image of the shallow subsurface around the construct resulting from electric resistivity, seismic refraction, and GPR methods carried out along 6 lines in the site was used to investigate the relationship between the foundation characteristics and the structural safety. Tilting of the pagoda southwest towards seems to result from the low resistivity zones found in the southwestern part. The GPR and seismic surveys revealed a boundary at depth of 3.3~3.5m dividing into two layers, compacted overlaid soil and the original ground. The boundary appears to dip southwest. The artificial layer as a foundation does not covers as much as the bottom area of the pagoda. This top soil dipping southwest seems to result in tilting of foundation southwestward towards. Our geophysical result suggests ground reinforcement in the western part of the survey area for the conservation of the construct.

  • PDF