• Title/Summary/Keyword: soil damage

Search Result 965, Processing Time 0.026 seconds

Paenibacillus polymyxa and Burkholderia cepacia Antagonize Ginseng Root Rot Pathogens

  • Lee, Young Don;Hussein, Khalid Abdullah;Joo, Jin Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.598-605
    • /
    • 2017
  • To isolate rhizobacteria exhibiting antifungal activities for for five pathogenic fungi (Sclerotinia sclerotiorum, Fusarium solani, Collectotricum gloeosporides, Fusarium oxysporum, and Botrytis cinerea) which cause damage to Ginseng root in Ginseng grown fields, four soils were collected from Cheorlwon gun, in Korea. From 4 soils, a total of 160 bacterial strains were isolated by dilution plate method. Among 160 strains, 32 strains showed antifungal activities for one or more pathogens. From 32 strains, three strains exhibited antifungal activities for all pathogens. These are two Burkholderia cepacia (ATCC 25416 and ET 13) and one Paenibacillus polymyxa (ATCC 842). These potent antifungal strains showed high identities (99% using 16S-rRNA sequencing).

Physiological Response of Rice Plant under Environmental Stress -I. Nutritional disorder under soil reduction in paddy fields (환경장애(環境障碍)에 대(對)한 수도(水稻)의 생리반응(生理反應) -I. 농가포장(農家圃場)의 토양환원(土壤還元)에 의(依)한 영향장해(營養障害))

  • Park, Hoon;Mok, Sung Kyun;Kwon, Hang Gwang;Park, Chon Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.2
    • /
    • pp.115-127
    • /
    • 1973
  • Leaf discoloration of IR667 lines (tropical) and leading locals (temperate) in fields was classified according to the probable causes and nutritional disorder due to soil reduction in 1972 was investigated. 1. The causes of leaf discoloration in IR667 were low air temperature, soil reduction, seed born, insect bite, nitrogen depression, overdose pesticide, strong wind, early senescence and unknown one. 2. Leaf discoloration due to soil reduction which has been called Sageumbyeong by famers, was caused by the heavy application of $Ca(OH)_2$, compost and poor drainage followed by Zn and K deficiency and Fe toxicity. 3. About 30 days after transplanting deficiency concentration of K and Zn in leaf blade appears to be less than 2.0% and 20ppm respectively, and greater than 200ppm, 500ppm, and 1.0% respectively for toxicity or excess of Fe, Mn and Ca. and in the shoot 2.4% for K, 30ppm for Zn and 800ppm for Fe. The value of K/Ca should be greaterthan 2.0 for health. 4. When plants were damaged by soil reduction the contents of N, P, Ca, Mg, Fe, Mn, Na in shoot were increased and those of K, Zn, Si were decreased. 5. IR667 lines show in shoot higher content of N, P, Ca, Mg, Si, Na, and lower content K, Zn, Fe, Mn and lower root activity than local leading varietles in either healthy or disieased case, indicating IR667 lines are likely more suseptible to soil reduction damage. 6. Normal soil was less than 6.5 of pH and greater than -50 mv of Eh, but pH of problem soil was ranged from 6.7 to 7.4 and Eh from -100 to -190. 7. The root activity (${\alpha}$-naphthylamine oxidation) decreased at early stage of soil redudtion damage, then increased with severity and at the end it decreased again, but IR667 lines showed always lower root activity than local ones.

  • PDF

The Effects of Major Climatic Factors on Barely Response to NPK Fertilizers (대맥(大麥)의 NPK 비료응수(應酬)에 미치는 주요기상인자(主要氣象因子)들의 영향(影響)에 관(關)하여)

  • Park, Nae Jung;Lee, Choon Soo;Ryu, In Soo;Park, Chon Suh;Kim, Yung Sup
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.2
    • /
    • pp.129-136
    • /
    • 1973
  • In order to study the effects of climatic factors on barley responses to NPK fertilizers, the responses under the conditions of cold, moisture and drought damages and in different temperature regions, Nothern, Central, and Southern, which were devided according to average temperature for growing season of barley (from Nov. to May) were investigated from the results of NPK experiments which were carried out from Nov., 1965 to May 1969. The relationships between occurrence rate of cold, moisture, and drought damages and average or average lowest temperature in winter (Dec., Jan., and Feb), and the amount of precipitation in spring (Mar., Apr,. and May) were also investigated. 1. The lower the average lowest temperature, the higher the occurrence rate of cold damage of barley. When affected by cold damage, barley responded more significantly to P and K fertilizers. 2. The more the amount of precipitation in spring, the more the moisture damage and the less the drought damage. Damage from both moisture and drought were the lowest at 280mm. Since the average precipitation in spring in Korea is 230mm, drought damage is always more problem in terms of occurrence of damage, but total yield reduction is greater by moisture damage. 3. When affected by moisture damage, barley responded more to P and K fertilizers. In case of drought damage, only response to K was recognizable. 4. The reductions of barley yield due to cold, moisture, and drought damages were in average 31 (29-33), 42, and 19(12-25)%, respectively. 5. Average barley responses to NPK fertilizers were 44(34-58), 19(5-38), and 9(1-34)%, respectively by percent responses with regard to maximum possible yields. 6. Responses to nitrogen increased as the sunshine hours increased. Under dry condition, the response increased as the precipitation increased. However if the amount of precipitation was excessive or too little, the response was dropped markedly. 7. The responses to P and K were higher in North than South to the same degree. As the average temperature for growing season of barley (from Nov. to May) increased by $1^{\circ}C$, the percent responses to both P and K increased by 4.3%.

  • PDF

Studies on Uptake by Crops of Lead and Reduction of it's Damage -II. Effect of application of calcium and phosphate materials on Pb Solubility in Soil (농작물(農作物)에 대(對)한 납(pb)의 흡수(吸收) 및 피해경감(被害輕減)에 관(關)한 연구(硏究) -II. 석회(石灰)와 인산물질시용(燐酸物質施用)이 토양중(土壤中) 납(pb) 용출량(溶出量)에 미치는 영향(影響))

  • Kim, Kyu Sik;Kim, Bok Young;Han, Ki Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.3
    • /
    • pp.217-221
    • /
    • 1986
  • A column test was conducted to find out the effect of application of slaked lime, calcium sulfate, calcium superphosphate, and phosphoric acid on the solubility of lead in soil. The soil was adjusted to 310.8 ppm concentration of Pb and applied with amounts of calcium equivalent to 600, 1000, 2000 ppm as slaked lime; sulfate 144, 288, 432 ppm as calcium sulfate; phosphate 95, 190, 285 ppm as calcium superphosphate and phosphoric acid, respectively. The results obtained are as follows: 1. The increasing application of improvement agents reduced the amounts of water soluble Pb in soil. Phosphoric acid was the most effect among to the treatments. 2. The slaked lime treatment has the highest pH of soil and the lowest at the phosphoric acid one. The soil Eh has a reverse tendency the soil pH. 3. Water soluble Ca, $PO_4$ and $SO_4$ contents increased with increasing application amounts of improvement agents in soil. 4. $1N-NH_4$ OAC soluble Pb content in soil was a decreasing tendency in the order of calcium superphosphate, phosphoric acid, slaked lime, calcium sulfate and control after experiment.

  • PDF

The Effect of Soil Amended with β-glucan under Drought Stress in Ipomoea batatas L. (𝛽-glucan 토양혼합에 따른 고구마의 가뭄피해 저감 효과 )

  • Jung-Ho Shin;Hyun-Sung Kim;Gwan-Ju Seong;Won Park;Sung-Ju Ahn
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.64-72
    • /
    • 2023
  • Biopolymer is a versatile material used in food processing, medicine, construction, and soil reinforcement. 𝛽-glucan is one of the biopolymers that improves the soil water content and ion adsorption in a drought or toxic metal contaminated land for plant survival. We analyzed drought stress damage reduction in sweet potatoes (Ipomoea batatas L. cv. Sodammi) by measuring the growth and major protein expression and activity under 𝛽-glucan soil amendment. The result showed that sweet potato leaf length and width were not affected by drought stress for 14 days, but sweet potatoes grown in 𝛽-glucan-amended soil showed an effect in preventing wilting caused by drought in phenotypic changes. Under drought stress, sweet potato leaves did not show any changes in electrolyte leakage, but the relative water content was higher in sweet potatoes grown in 𝛽-glucan-amended soil than in normal soil. 𝛽-glucan soil amendment increased the expression of plasma membrane (PM) H+-ATPase, but it decreased the aquaporin PIP2 (plasma membrane intrinsic protein 2) in sweet potatoes under drought stress. Moreover, water maintenance affected the PM H+-ATPase activity, which contributed to tolerance under drought stress. These results indicate that 𝛽-glucan soil amendment improves the soil water content during drought and affects the water supply in sweet potatoes. Consequently, 𝛽-glucan is a potential material for maintaining soil water contents, and analysis of the major PM proteins is one of the indicators for evaluating the biopolymer effect on plant survival under drought stress.

The analysis of drought susceptibility using soil moisture information and spatial factors involved in satellite imagery (위성영상의 토양수분 정보와 공간적 요인을 고려한 가뭄 민감도 분석)

  • 박은주;황철수;성정창
    • Spatial Information Research
    • /
    • v.10 no.3
    • /
    • pp.481-492
    • /
    • 2002
  • The severity and spatial Patterns of spring drought on the croplands arc investigated using satellite imagery(Landsat ETM+). It is necessary to analyze the area droughty conditions in order to decrease the damage and make the efficient policies. In this context, the information about soil moisture levels, which were fatal factors to the crop growth, was acquired from wetness calculated from Tasseled cap transformation. We confirmed that the wetness values have a strong correlation with NDVI and the principal components. The result showed that the intensity of vegetation covering the surface could be understood as the index of the impacts of drought on croplands and these relationships were effective to classify dry areas in satellite imagery.

  • PDF

Effect of Sawdust Treatment at Oil Contaminated Soil (경유오염 농경지의 톱밥 처리효과)

  • Lee, Jong-Sik;Lee, Yong-Hwan;Hong, Seung-Gil
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.191-193
    • /
    • 2000
  • To find out the countermeasure to plant damage at soil contaminated with oil, several adsorbents such as muck, peat, sawdust and PEAT SORB were treated at diesel oil contaminated soil. As the results, sawdust and PEAT SORB showed better effect of oil adsorption than muck and peat. Removal rate of diesel oil with sawdust treatment was higher than 95% at the condition which the ratio of adsorbent amount to oil was higher than 1:2(w/v). And the releasing amount of oil from adsorbent-oil complex was very small. With the oil treatment of $4,000\;L{\cdot}ha^{-1}$ at tillering stage, rice plant height and chlorophyll content were lower than control at non-adsorbent treatment, but those were increased at sawdust treatment.

  • PDF

Verifications of Resistance to Phytophthora spp. in 2-year-old Citrus junos Cultivars and Related Specie

  • Kwack, Yong-Bum;Kim, Hong Lim;Kwak, Youn-Sig;Lee, Yong Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.28-34
    • /
    • 2018
  • Yuzu (Citrus junos) gummosis disease, caused by Phytophthora nicotianae, was first reported in 1997. As known in citrus, Phytophthora is the most fastidious soil-borne pathogen to control. In order to minimize its damage to Citrus spp., integrated pest management (IPM) approach, including fungicide chemicals and resistant cultivars, is necessary. Therefore, in this study we tried to evaluate tolerance of yuzu cultivars and its related species against yuzu Phytophthora. Trifoliate orange was evaluated as a susceptible host to yuzu Phytophthora by both mycelial growth onto extract media and immature fruit inoculation. However, in zoospores spray-inoculation on 2-year-old cuttings tree, trifoliate orange appeared to have a resistant property as showing less than 6% diseased leaf rate. Among yuzu cultivars only 'Namhae No. 1' appeared resistant property against both P. nicotianae and P. citrophthora. The 'Namhae No. 1' showed 5.7% and 10.6% diseased leaf ratio by P. nicotianae and P. citrophthora, respectively. Clearly, in order to reduce damages caused by two yuzu Phytophthora, we suggest that growers may utilize a trifoliate orange as a rootstock and 'Namhae No. 1' as a scion for fruit production.

SPH Modeling of Hydraulics and Erosion of HPTRM Levee

  • Li, Lin;Rao, Xin;Amini, Farshad;Tang, Hongwu
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • Post-Katrina investigations revealed that most earthen levee damage occurred on the levee crest and landward-side slope as a result of either wave overtopping, storm surge overflow, or a combination of both. In this paper, combined wave overtopping and storm surge overflow of a levee embankment strengthened with high performance turf reinforcement mat (HPTRM) system was studied in a purely Lagrangian and meshless approach, two-dimensional smoothed particle hydrodynamics (SPH) model. After the SPH model is calibrated with full-scale overtopping test results, the overtopping discharge, flow thickness, flow velocity, average overtopping velocity, shear stress, and soil erosion rate are calculated. New equations are developed for average overtopping discharge. The shear stresses on landward-side slope are calculated and the characteristics of soil loss are given. Equations are also provided to estimate soil loss rate. The range of the application of these equations is discussed.

The Retaining wall Design nearby Large Excavation for Developed Underground in Urban Area. (도심지 지하공간개발을 위한 대형 대심도 근접굴착 흙막이 설계사례)

  • Shin, Yung-Wok;Park, Jong-Min;Lee, Sung-Hwan;Lee, Bong-Yeol;Lee, Jung-Young;Chang, Huck-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.49-83
    • /
    • 2005
  • ESCP Project showed an urban excavation case and introduced design method for case of Soil-Structure behavior in urban excavation. In this case, a retaining structures design to analysis the behavior of retaining wall and adjacent structures in urban excavations was applied by using a Elasto-plastic beam and limit Equilibrium analysis and soil-structure interaction analysis. Reliable design of earth retaining structures and the ground adjacent to braced wall in urban excavation are often difficult due to many variable factors. The ground settlement and the damage of adjacent structures in urban excavation has been an imprtant issue. Therefore, the stability of the adjacent structures must be secured with the excavation support and research on the protection of adjacent structure is necessary.

  • PDF