• Title/Summary/Keyword: soil condition

Search Result 3,309, Processing Time 0.025 seconds

A Case Study on the NATM Tunnel Excavation under the Soft Soil Ground Condition by Back Analysis Method (역해석 기법에 의한 연약지반 NATM터널 굴착사례 연구)

  • JO, Hyun;PARK, Jong-In;LEE, Ki-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.71-81
    • /
    • 2000
  • For the construction of NATM tunnel, it is required a design based on the accurate soil condition from soil investigation. However, in practice, it often designs tunnels without fully understanding the condition. Especially, when soft soil comes up, or ground water breaks out suddenly on the construction, it needs to secure the stability of tunnel by appropriate reinforcing construction according to the results of measurements on field superlatively reflecting the faced situation. This report reviews the mostsuitable stability of tunnel in the construction of soft soil of tunnel by numerical analysis using FDM after re-evaluated the soil properties through back analysis using the results of measurements to simulate abruptly occurred deformation. And applying steel pipe grouting row by row on the wall and the low part of tunnel and also applying the construction method of temporary invert after excavation of the upper part of tunnel, the excavation of soft soil tunnel secured the structural stability of tunnel has been completed.

  • PDF

Comparison of Dry-Seeding Methods for Improving Rice Seedling Stand on Reclaimed Saline Soil (간석지 벼 입모율 향상을 위한 건답직파 방법 비교)

  • 이인;성기영
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.3
    • /
    • pp.370-375
    • /
    • 1996
  • This study was conducted to find out the feasibility in direct seeded rice cultivation on the reclaimed saline soil. Seedling emergence was tested under the different application rates of rice straw and seeding depth, and also under combined treatments soil moisture regimes and seeding depth on saline soils in a greenhouse. The comparison of seedling stand and yield performance of rice in rotary till after broadcast seeding and in non-plow after broadcast seeding were tested on a field that reclaimed saline soil. Seedling emergence ratio in application of rice straw(4 and 6 tons /ha) was higher than that in non-application of rice straw. Seedling emergence and plant height were remarkably increased with the shallow seeding depth in the application of rice straw(4 tons /ha). The seedling emergence under proper soil moisture condition(25%) was higher than that under excess soil moisture condition(35%). Under proper soil moisture condition, the plant height was increased with the shallowed seeding depth. The number of seedling stand per m$^2$ in non-plow after broadcast seeding was larger than that in rotary till after broadcast seeding. Panicle number per m$^2$ in non-plow after broadcast seeding was much larger than that in rotary till after broadcast seeding and the yield showed the same trends as panicle number.

  • PDF

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments in Upland Soil

  • Shin, Jae-Hoon;Lee, Sang-Min;Lee, Byun-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.751-760
    • /
    • 2015
  • Management of renewable organic resources is important in attaining the sustainability of agricultural production. However, nutrient management with organic resources is more complex than fertilization with chemical fertilizer because the composition of the organic input or the environmental condition will influence organic matter decomposition and nutrient release. One of the most effective methods for estimating nutrient release from organic amendment is the use of N mineralization models. The present study aimed at parameterizing N mineralization models for a number of organic amendments being used as a nutrient source for crop production. Laboratory incubation experiment was conducted in aerobic condition. N mineralization was investigated for nineteen organic amendments in sandy soil and clay soil at $20^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$. N mineralization was facilitated at higher temperature condition. Negative correlation was observed between mineralized N and C:N ratio of organic amendments. N mineralization process was slower in clay soil than in sandy soil and this was mainly due to the delayed nitrification. The single and the double exponential models were used to estimate N mineralization of the organic amendments. N mineralization potential $N_p$ and mineralization rate k were estimated in different temperature and soil conditions. Estimated $N_p$ ranged from 28.8 to 228.1 and k from 0.0066 to 0.6932. The double exponential model showed better prediction of N mineralization compared with the single exponential model, particularly for organic amendments with high C:N ratio. It is expected that the model parameters estimated based on the incubation experiment could be used to design nutrient management planning in environment-friendly agriculture.

Changes of Soil Temperature and Moisture under the Agrivoltaic Systems in Fallow Paddy Field during Spring Season (봄철 영농형 태양광 시설 하부 휴경논 토양의 온도와 수분 변화)

  • Yuna Cho;Euni Cho;Jae-Hyeok Jeong;Hoejeong Jeong;Woon-Ha Hwang;Jaeil Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.218-225
    • /
    • 2023
  • An agrivoltaic system (AVS) is a combined system that generates power through photovoltaic panels (PVPs) installed above a field where a crop is cultivated. Although soil moisture is an important limiting factor for open-field crop production, particularly during spring season in Korea, it is not well considered in the utilization of AVS. Indeed, the application of water-energy-food nexus on the AVS should be necessary. In this study, the changes of soil moisture and temperature under the AVS was investigated in fallow paddy field during spring season. The AVS that has partial shading condition by PV panels was decreased soil temperature and increased soil moisture compared to open-field. Furthermore, the maximum of the change in soil moisture to the change in soil temperature had a negative correlation both on open-field and AVS under wet condition. It represents that the micro-climate under the AVS is in energy-limited condition. The open-field of relatively high soil temperature was in water-limited condition. The different behavior of soil moisture on the AVS should be considered for the sustainable agricultural system as related to water-energy-food nexus.

Analysis of Soil Erodibility Potential Depending on Soil and Topographic Condition - A Case Study of Ibang-myeon, Changnyeong-gun, Kyungsangnam-do, South Korea- (토양 및 지형 조건에 따른 토양침식 잠재성 분석 - 경상남도 창녕군 이방면을 대상으로 -)

  • Park, In-Hwan;Jang, Gab-Sue;Lee, Geun-Sang;Seo, Dong-Jo
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • Changes in the soil physical property and the topographic condition derived from agricultural activities like as farming activities, land clearance and cutting down resulted in environmental and economic problems including the outflow of nutrient from farms and the water pollution. Several theories on the soil conservation have been developed and reviewed to protect soil erosion in the regions having a high risk of erosion. This study was done using the USLE model developed by Wischmeier and Smith (1978), and model for the slope length and steepness made by Desmet and Govers (1996), and Nearing (1997) to evaluate the potential of the soil erodibility. Therefore, several results were obtained as follows. First, factors affecting the soil erosion based on the USLE could be extracted to examine the erosion potential in farms. Soil erodibility (K), slope length (L), and slope steepness (S) were used as main factors in the USLE in consideration of the soil, not by the land use or land cover. Second, the soil erodibility increased in paddy soils where it is low in soil content, and the very fine sandy loam exists. Analysis of the slope length showed that the value of a flat ground was 1, and the maximum value was 9.17 appearing on the steep mountain. Soil erodibility showed positive relationship to a slope. Third, the potential soil erodibility index (PSEI) showed that it is high in the PSEI of the areas of steep upland and orchard on the slope of mountainous region around Dokjigol mountain, Dunji mountain, and Deummit mountain. And the PSEI in the same land cover was different depending on the slope rather than on the physical properties in soil. Forth, the analysis of land suitability in soil erosion explained that study area had 3,672.35ha showing the suitable land, 390.88ha for the proper land, and 216.54ha for the unsuitable land. For unsuitable land, 8.71ha and 6.29ha were shown in fallow uplands and single cropping uplands, respectively.

Effect of Food Waste Compost on Crop Productivity and Soil Chemical Properties under Rice and Pepper Cultivation

  • Lee, Chang Hoon;Ko, Byong-Gu;Kim, Myung-Sook;Park, Seong-Jin;Yun, Sun-Gang;Oh, Taek-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.682-688
    • /
    • 2016
  • Food waste has recognized one of useful sources for potentially agricultural application to supply organic matter and nutrients in arable soil. However, there was little information on application of food waste compost related to the maturity and NaCl content in arable soil. This study evaluated the effect of food waste compost application on yield and fertility in soil under flooding and upland condition. The yields in rice and pepper cultivation decreased with increasing the rate of food waste compost application in soil (p<0.05). Maximum yields of rice ($49.0g\;plant^{-1}$) and pepper ($204g\;plant^{-1}$) were shown at 10 and $30Mg\;ha^{-1}$ of food waste compost application, respectively. The N, P, and K contents in grain and plant residues increased by the application of food waste compost, there was no difference on Na/K ratio in plant tissue among the treatments. Application of food waste compost resulted in the increase of pH, EC, TC, available P contents in soil after crop harvest, especially, which was shown the increase of the CEC and exchangeable sodium percentage (ESP) contents in irrespective of water condition. In conclusion, application of food waste compost in soil was effective on the supply of the organic matter and nutrient. However, it might need caution to apply food waste compost for sustainable productivity in arable soil because of potential Na accumulation.

Estimation of Irrigation Requirements for Red Pepper using Soil Moisture Model with High Resolution Meteorological Data (고해상도 기상자료와 토양수분모형을 이용한 고추의 관개량 산정)

  • Shin, Yong-Hoon;Choi, Jin-Yong;Lee, Seung-Jae;Lee, Sung-Hack
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.31-40
    • /
    • 2017
  • The aim of this study is to estimate net irrigation requirements for red pepper during growing period using soil moisture model. The soil moisture model based on water balance approach simulates soil moisture contents of 4 soil layers in crop root zone considering soil moisture extraction pattern. The LAMP (Land-Atmosphere Modeling Package) high resolution meteorological data provided from National Center for AgroMeteorology (NCAM) was used to simulate soil moisture as the input weather data. Study area for the LAMP data and soil moisture simulation covers $36.92^{\circ}{\sim}37.40^{\circ}$ in latitude and $127.36^{\circ}{\sim}127.94^{\circ}$ in longitude. Soil moisture was monitored using FDR (Frequency Domain Reflectometry) sensors and the data were used to validate the simulation model from May 24 to October 20 in 2016. The results showed spatially detailed soil moisture pattern under different weather conditions and soil texture. Net irrigation requirements were also different by location reflecting the spatially distributed weather condition. The average of the requirements was 470.7 mm and averages about soil texture were 466.8 mm, 482.4 mm, 456.0 mm, 481.7 mm, and 465.6 mm for clay loam, sandy loam, silty clay loam, clay, and sand respectively. This study showed spatial differences of soil moisture and the irrigation requirements of red pepper about spatially uneven weather condition and soil texture. From the results, it was demonstrated that high resolution meteorological data could provide an opportunity of spatially different crop water requirement estimation during the irrigation management.

Soil Conditioning for better Soil Management (합리적(合理的) 토양관리(土壤管理)를 위한 토양개량(土壤改良))

  • De Doodt, M.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.4
    • /
    • pp.311-324
    • /
    • 1992
  • Polymeric substances in organic matter of soils aggregate soil particles into a crumb structure which greatly influences such properties as water movement, aeration and heat transfer. Poorly-structured soils may be improved by the incorporation of synthetic polymers where the main objects are : promoting germination or establishing crops, improving drainage, combating wind and water erosion, and reducing evaporation from the surface of soil under arid condition.

  • PDF

Lateral Behavior of Sin811e and Group Piles in Sand (사질토 지반에서 말뚝의 수평거동)

  • 김영수;김병탁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.3-44
    • /
    • 1999
  • This paper discusses the lateral behavior of single and group piles in homogeneous and non-homogeneous(two layered) soil. In the single pile, the model tests were conducted to investigate the effects on ratio of lower layer height to embedded pile length, ratio of soil modules of upper layer to lower layer, boundary rendition of pile head and tip, embedded pile length, pile construction condition, ground condition with saturate and moisture state in Nak-Dong river sand. Also, in the group pile, the model tests were to investigate the effects on spacing-to-diameter ratio of pile, pile array, ratio of pile spacing, boundary condition of pile head and tip, eccentric load and ground condition. The maximum bending moment and deflection induced in active piles were found to be highly dependent on the relative density, pile construction condition, boundary condition of pile head and tip. Based on the results obtained, it was found that the decrease of lateral bearing capacity in saturated sand was in the range of 31% - 53% as compared with the case of dry sand. Also, in the group pile, a spacing-to-diameter of 6.0 seems to be large enough to eliminate the group effect for the case of relative density of 61.8%, and 32.8%, and then each pile in such a case behaves essentially the same as a single pile. In this study, the program is developed by using the modified Chang method which used p - y method and the exact solution of governing equation of pile and it can be used to calculate the deflection, bending moment and soil reaction with FDM in non-homogeneous soil. In comparing the modified Chang method with field test results, the predict results shows better agreement with measured results in field tests.

  • PDF

Germinability of Film-Coated Snap Bean Seed as Affected by Oxygen Diffusion Rate under Different Soil Moisture Contents

  • Kim, Seok-Hyeon;Alan G. Taylor
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • The film coated snap bean (Phaseolus vulgaris) seeds with five different coating materials treated with 3% increase in seed weight were planted at sandy loam soil controlled moisture content of 18, 19, 20 and 21 %. The oxygen diffusion rate (ODR) was calculated from the different moisture content soil. The number of normal seedlings, seedling vigor, and seedling capability in field (seed vigor x dry matter weight) were observed at 9 days after planting and compared to the changes of ODR. The germination rate and ODR were sharply decreased simultaneously in the seeds planted at 21 % soil moisture content. Seedling emergence did not occur at all as the soil moisture content increased above 22 %. Hence this value should be considered as the threshold of soil moisture content for seedling emergence. An ODR value under 20% did not influence the percent emergence significantly. The certain difference observing in the emergence at the same ODR was not related clearly to the condition of soil. So it can be assumed that the limit of soil moisture content for the emergence of snap bean was approximately 20%. The value of 18% soil moisture content may be considered as the optimum for snap bean emergence. There was close relationship between the mean value of ODR in different soil moisture contents and the emergence. The germination rates of the seeds coated with the different materials were quite different when the seeds were planted at 21 % soil moisture. Dry weight of the seedlings from film coated seeds was decreased slightly, but the germination rates were not much different from the non-treated control under relatively higher soil moisture content (21 %). Major factor lowering emergence rate was oxygen stress while film coating act as a minor constraint for snap bean sown in excess soil moisture condition.