• 제목/요약/키워드: soil chemical property

Search Result 200, Processing Time 0.021 seconds

Physico-Chemical Properties of Organically Cultivated Upland Soils (유기농경지 밭 토양의 물리화학적 특성)

  • Lee, Cho-Rong;Hong, Seung-Gil;Lee, Sang-Beom;Park, Choong-Bae;Kim, Min-Gi;Kim, Jin-Ho;Park, Kwang-Lai
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.875-886
    • /
    • 2015
  • The upland soils (56 samples) from organic farms in Gyeonggi-do (12 sites), Gangwon-do (8 sites), Chungcheong-do (14 sites), Gyeongsang-do (4 sites), Jeollado (18 sites) in Korea were collected and their physical and chemical properties were analyzed by RDA's methods. In the results of physical property, the bulk density of soils averaged $1.14Mgm^{-3}$ (surface soil), $1.38Mgm^{-3}$ (subsoil), respectively. The porosity of them was 57%, 48%. Organically managed soil's (OS) bulk density was lower than conventional soil's but OS's porosity was a little higher than conventionally managed soil in surface soil. The depth of plough layer in organically managed soils was 21.2 cm indicating that the organic farming had good effect on soil physical property. In the results of chemical property, the surface soil pH was 6.9 and the contents of organic matter (OM) was $26gkg^{-1}$, available phosphate (Avail. $P_2O_5$) was $554mgkg^{-1}$, exchangeable calcium (Exch. Ca) was $8.9cmol_ckg^{-1}$, exchangeable potassium (Exch. K) was $0.89cmol_ckg^{-1}$, exchangeable magnesium (Exch. Mg) was $2.0cmol_ckg^{-1}$. The subsoil pH was 6.8 and the contents of OM was $21gkg^{-1}$, avail. $P_2O_5$ was $491mgkg^{-1}$, exch. Ca was $7.9cmol_ckg^{-1}$, exch. K was $0.68cmol_ckg^{-1}$, exch. Mg was $1.8cmol_ckg^{-1}$. The nutrient accumulation emerged in organic farming. Compared to the optimum nutrient range for the conventional upland soils, the exceed rate of pH, OM, available phosphate, and exchangeable Ca, K, and Mg was 79, 52, 64, 84, 66% and 55%, respectively, which mainly resulted from the over-application of lime materials or livestock manure compost. With these results it is suggested that organic farm need to reduce the use of inputs, which make soil alkalification or nutrient accumulation. More study on effects of inputs on lowering soil pH from alkalification could help organically managed soil to be improved.

Effect of Organic Fertilizer Application on the Chemical Properties of the Orchard Soils and Apple Yield (사과원에서 유기질비료시용이 토양화학성 및 사과 수량에 미치는 영향)

  • Choi, Jyung;Lee, Dong-Hoon;Choi, Choong-Lyeal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.393-397
    • /
    • 2000
  • This study was conducted to find out the effect of long-term compost application on the chemical properties of the orchard soils and apple quality. The contents of P and cations in soils were increased by the application of compost, while there are no difference in that of organic matter. The increase in application rates of compost resulted to the increase in apple yields, however, firmness and Brix of apple were as not differentiated by the compost application. The application of lower chemical fertilizer and higher compost resulted to the increase in the contents of organic matter and Ca in soils. The compost application resulted to the increase in inorganic material contents in soil but was not effective on the quality of apple fruits.

  • PDF

Soil stabilization by ground bottom ash and red mud

  • Kim, Youngsang;Dang, My Quoc;Do, Tan Manh;Lee, Joon Kyu
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.105-112
    • /
    • 2018
  • This paper presents results of a compressive investigation conducted on weathered soil stabilized with ground bottom ash (GBA) and red mud (RM). The effects of water/binder ratio, RM/GBA ratio, chemical activator (NaOH and $Na_2SiO_3$) and curing time on unconfined compressive strength of stabilized soils were examined. The results show that the water/binder ratio of 1.2 is optimum ratio at which the stabilized soils have the maximum compressive strength. For 28 days of curing, the compressive strength of soils stabilized with alkali-activated GBA and RM varies between 1.5 MPa and 4.1 MPa. The addition of GBA, RM and chemical activators enhanced strength development and the rate of strength improvement was more significant at the later age than at the early age. The potential environmental impacts of stabilized soils were also assessed. The chemical property changes of leachate from stabilized soils were analyzed in terms of pH and concentrations of hazardous elements. The observation revealed that the soil mixture with ground bottom ash and red mud proved environmentally safe.

Effect of Cattle-Manure Application on Soil Chemical Properties and Crop Yields in Rice-Forage Cropping System

  • Lee, Yejin;Yun, Hong-Bae;Sung, Jwa-Kyung;Ha, Sang-Keun;Song, Yo-Sung;Sonn, Yeon-Kyu;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.553-557
    • /
    • 2014
  • The steady increase in livestock industry has greatly required the stable production of food and forage crops. As an alternative, rice-forage cropping system has been attempted in several southern areas. The present study was performed to understand whether an application of cattle-manure compost affects soil chemical properties and crop productivity in rice-forage cropping system, rice ${\rightarrow}$ summer oat ${\rightarrow}$ rye, in Jangheong county, south Jeolla province from 2013 to 2014. Treatments was composed of control (no compost), CM1 (compost application before rice transplanting), and CM2 (two-times compost application, before rice transplanting and after rice harvest), and inorganic fertilizers (N, P, and K) were equally dressed in all plots. Yields of rice were not significantly different between treatments, however, oat production was 1.25-fold higher in CM1 and CM2. Nutrient uptake amounts of rye were higher in CM2 than CM1 and control. Total nitrogen in soil was maintained stable level during crop cultivation. And soil organic matter contents in all treatments were increased by crop residue. Available P_2O_5$ and exchangeable K were increased by cattle manure application. Therefore, it suggested that the amount of nutrient by forage crop residue should be considered in rice-forage multiple cultivation.

Long-term Assessment of Soil Chemical Properties in Different Soil Texture Orchard Fields in Gyeongnam Province

  • Kim, Min Keun;Sonn, Yeon-Kyu;Kang, Seong-Soo;Heo, Jae-Young;Kim, Dae-Ho;Choi, Yong-Jo;Lee, Sang-Dae;Shin, Hyun-Yul;Ok, Yong Sik;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.240-245
    • /
    • 2015
  • The monitoring of soil fertility changes in orchard is very important for agricultural sustainability. Field monitoring was performed to evaluate the soil chemical properties of 140 orchard (23 sites for sandy loam, 88 sites for loam, 28 sites for silt loam, and 1 site for loamy fine sand) in Gyeongnam province every 4 years from 2002 to 2014. Soil chemical properties such as pH, electrical conductivity, amount of organic matter (OM), available phosphate ($P_2O_5$), lime requirement (LR), exchangeable potassium (K), calcium (Ca), magnesium (Mg), and sodium were analyzed. The amount of OM, exchangeable K, Ca, and Mg were significantly increased as cultivation year increases. The frequency distribution within optimum range of subsoil chemical properties in 2014 was 34.3% for pH, 35.0% for OM, 17.1% for available $P_2O_5$, 22.9% for exchangeable K, 15.7% for exchangeable Ca, and 22.1% for exchangeable Mg. In addition, the available $P_2O_5$ and exchangeable calcium were excess level with portions of 69.3% and 48.6%, respectively. The soil chemical properties in the topsoil and subsoil showed that soil pH was significantly higher in sandy loam soil than those from the loam and silt loam soils. The OM, exchangeable K, Mg, and LR of loam soil were higher than those from the sandy loam soil. These results indicated that a balanced management of soil chemical properties as affected by soil texture can improve the amount of fertilizer applied for sustainable agriculture in orchard field.

Long-term Assessment of Chemical Properties from Paddy Soils in Gyeongnam Province

  • Son, Daniel;Sonn, Yeon-Kyu;Kang, Seong-Soo;Heo, Jae-Young;Kim, Dae-Ho;Choi, Yong-Jo;Lee, Sang-Dae;Ok, Yong Sik;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.132-137
    • /
    • 2016
  • Field monitoring was performed to evaluate the chemical properties of 260 paddy soils every 4 years from 1999 to 2015 in Gyeongnam province. Soil chemical properties, including soil pH, electrical conductivity, amount of organic matter (OM), available phosphate ($P_2O_5$), exchangeable potassium (K), calcium (Ca), magnesium (Mg) and sodium (Na), and available silicate ($SiO_2$) were analyzed. In 2015, the average values of pH, OM, available $P_2O_5$, exchangeable K, Ca, and Mg, and available $SiO_2$ was 5.8, $30g\;kg^{-1}$, $222mg\;kg^{-1}$, $0.37cmol_c\;kg^{-1}$, $6.5cmol_c\;kg^{-1}$, and $1.4cmol_c\;kg^{-1}$, $252mg\;kg^{-1}$, respectively. The frequency distribution within optimum range of paddy soils was 49.2%, 20.8%, 18.5%, and 5.8% for soil pH, OM, available $P_2O_5$, and available $SiO_2$, respectively. The available $P_2O_5$ concentrations in 2015 was excess level with portion of 58% and did not alter significantly during the experimental period. Although the average of available $SiO_2$ concentration has tended to increase with every year, the insufficient proportion of available $SiO_2$ concentration in 2015 was 48%. These results indicated that a balanced management of soil chemical properties can properly control the amount of fertilizer applied for sustainable agriculture in paddy field.

Decision of Available Soil Depth Based on Physical and Hydraulic Properties of Soils for Landscape Vegetation in Incheon International Airport

  • Jung, Yeong-Sang;Lee, Hyun-Il;Jung, Mun-Ho;Lee, Jeong-Ho;Kim, Jeong-Tae;Yang, Jae E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.522-527
    • /
    • 2015
  • Decision of available soil depth based on soil physical and hydraulic properties for the $3^{rd}$ Landscape Vegetation Project in the Incheon International Airport was attempted. The soil samples were collected from the 8 sites at different depths, 0-20 and 20-60cm, for the three project fields, A, B, and C area. Physical and chemical properties including particle size distribution, organic matter content and electrical conductivity were analyzed. Hydrological properties including bulk density and water holding capacity at different water potential, -6 kPa, -10 kPa, -33 kPa, and -1500 kPa were calculated by SPAW model of Saxton and Rawls (2006), and air entry value was calculated by Campbell model (1985). Based on physical and hydrological limitation, feasibility and design criteria of soil depth for vegetation and landfill were recommended. Since the soil salinity of the soil in area A area was $19.18dS\;m^{-1}$ in top soil and $22.27dS\;m^{-1}$ in deep soil, respectively, landscape vegetation without amendment would not be possible on this area. Available soil depth required for vegetation was 2.51 m that would secure root zone water holding capacity, capillary fringe, and porosity. Available soil depth required for landscape vegetation of the B area soil was 1.51 m including capillary fringe 0.14 m and available depth for 10% porosity 1.35 m. The soils in this area were feasible for landscape vegetation. The soil in area C was feasible for bottom fill purpose only due to low water holding capacity.

Improving Accuracy of Soil Property Measurements by NIR Spectroscopy

  • Ryu, Kwan Shig;Cho, Rae Kwang;Park, Woo Churl;Kim, Bok Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.177-179
    • /
    • 2001
  • Traditional wet chemical methods for testing of soil properties require extensive time and labor, and cause the discharge of pollutants, making them undesirable for routine soil analyses. This research was conducted to improve the accuracy of soil properties in soil fertility assessments. A total of 140 finely ground soil samples were used to obtain accurate calibrations and validation for estimating soil moisture, OM, and T-N. Finely ground soil samples satisfied the improved accuracy for routine NIR measuring of the field soils. The results indicated that NIR spectroscopy could be used as a routine method for quantitatively determining OM, moisture, and T-N of field soil, although this technique requires many combinations of sample pretreatments and data manipulations to obtain optimal predictions.

  • PDF

Long-Term Investigation of Regional Topographic Effects on Soil Chemical Properties and Heavy Metal Concentrations in Paddy Fields

  • Ahn, Byung-Koo;Kang, Seong-Soo;Shin, Jae-Yeon;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.738-743
    • /
    • 2012
  • Topographic conditions of agricultural fields work as a important factor to identify different soil properties. This study was conducted to investigate the selected soil chemical properties and the concentrations of heavy metals, Cd, Cr, Pb, Cu, Ni, and Zn, in the paddy fields of different topographic areas at four year intervals from 1999 to 2011. Three-hundred soil sampling sites in the paddy fields were selected from the different topographic areas that were local valley and fans, fluvio-marine deposits, alluvial plains, and diluvial terraces. The mean values of soil pH ranged 5.7~5.8 that were within optimal range for rice cultivation. The mean values of other properties such as soil organic matter (SOM) content, the concentrations of exchangeable cations, $K^+$, $Ca^{2+}$, and $Mg^{2+}$, and available silicate concentration were lower or close to the optimal values, but the mean concentrations of available phosphorus were exceeded the range of optimal value, $80{\sim}120mg\;kg^{-1}$, in many paddy fields. In particular, The concentrations of available phosphorus in the paddy fields of local valley and fans, alluvial plains, and fluvio-marine plains were mostly declined. However, in diluvial terrace areas, the phosphorus concentrations unexpectedly increased; furthermore, they were significantly higher than those in other topographic areas. The mean concentrations of 0.1 M HCl-extractable heavy metals, Cd, Cr, Pb, Cu, Ni, and Zn, in the paddy fields were slightly and gradually declined during the study years, but the Pb concentrations were not statistically changed. In addition, the concentrations of heavy metals were widely ranged depending on the different sampling sites. Nevertheless, the concentrations of heavy metals were significantly lower than the levels of Soil Contamination Warning Standard (SCWS) for agricultural lands (1-region) presented in Soil Environment Conservation Law (SECL).

Monitoring of Soil Chemical Properties and Pond Water Quality in Golf Courses after Application of SCB Liquid Fertilizer (골프코스에서 SCB저농도액비 살포에 따른 토양화학성과 연못수질의 모니터링)

  • Kim, Young-Sun;Ham, Suon-Kyu;Lim, Hye-Jung
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.44-53
    • /
    • 2012
  • As SCB liquid fertilizer (SCB) produced from or out of livestock manure by slurry composting and biofiltration process was applied in golf course, the effect on soil properties and water quality was little investigated. This study was conducted to evaluate the effect of the SCB liquid fertilizer application on environment by monitoring chemical property of soil and water quality of pond as applied chemical fertilizer (CF) and SCB. SCB application rarely contaminated the soil and pond in golf course and decreased organic matter, CEC and Ca in soil and pH and T-N for water quality of pond. In correlation coefficient between soil property parameters, water quality parameters and water quality items, SCB applied in golf course decreased organic matter and CEC in soil and increased SAR in water quality (P<0.01). Nitrogen applied in golf course with SCB or CF was significantly related to T-N in the soil (P<0.01), but not significantly related to T-N in the pond water. These results showed that SCB application little contaminated soil and pond in golf course, and was expected to control of thatch in soil and algae in pond.