• Title/Summary/Keyword: soil chamber tests and in-situ tests

Search Result 13, Processing Time 0.021 seconds

Estimation of Pile Ultimate Lateral Load Capacity in Sand Considering Lateral Stress Effect (응력상태를 고려한 사질토지반에 관입된 말뚝의 극한수평지지력 분석 및 평가)

  • Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong;Hwang, Sung-Wuk;Kim, Min-Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.161-167
    • /
    • 2007
  • In this study, ultimate lateral load capacity of piles is analyzed with consideration of lateral stress effect. Based on results obtained in this study, a method for the estimation of ultimate lateral load capacity is proposed. This makes it possible to more realistically estimate the ultimate lateral load capacity under various stress states caused by in-situ soil condition and pile installation process. Calibration chamber test results with various soil conditions were used in the analysis. From the test results, it was found that effect of the lateral stress was greater than that of the vertical stress on the ultimate lateral load capacity of piles. It was also found that, as the relative density increases, displacements required to reach the ultimate state increases, showing relative displacements of around 14% and 18-25% for $D_R$ : 55% and 86%, respectively. Based on results obtained in this study, a methodology for the estimation of ultimate lateral load capacity of piles using correction factors was proposed. Results from proposed method matched well measured results.

Blade Type Field Vs Probe for Evaluation of Soft Soils (연약지반 평가를 위한 블레이드 타입 현장 전단파 속도 프로브)

  • Yoon, Hyung-Koo;Lee, Chang-Ho;Eom, Yong-Hun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.33-42
    • /
    • 2007
  • The assessment of shear wave velocity($V_s$) in soft soils is extremely difficult due to the soil disturbances during sampling and field access. After a ring type field $V_s$ probe(FVP) has been developed, it has been applied at the southern coastal area of the Korean peninsular. This study presents the upgraded FVP "blade type FVP", which minimizes soil disturbance during penetration. Design concerns of the blade type FVP include the tip shape, soil disturbance, transducers, protection of the cables, and the electromagnetic coupling between transducers and cables. The cross-talking between cables is removed by grouping and extra grounding of the cables. The shear wave velocity of the FVP is simply calculated by using the travel distance and the first arrival time. The large calibration chamber tests are carried out to investigate the disturbance effect due to the penetration of FVP blade and the validity of the shear waves measured by the FVP. The blade type FVP is tested in soils up to 30m in depth. The shear wave velocity is measured every 10cm. This study suggests that the upgraded blade type FVP may be an effective device for measuring the shear wave velocity with minimized soil disturbance in the field.

Infiltration behavior and face stability of carbonate-added slurry shield tunnel (탄산을 첨가한 슬러리 쉴드 터널에서의 침투 거동 및 굴진면 안정성 평가)

  • Lee, Ik-Bum;Choi, Ki-Hoon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.401-413
    • /
    • 2013
  • Slurry shield tunnelling ensures stability by pressurizing the tunnel face with the slurry contained in the chamber. It resists water and earth pressure in order to prevent the failure in the tunnel face during tunnel excavation. If the ground is relatively coarse, slurry can not clog the tunnel face and excessive slurry infiltration will occur. In this case chemical compounds or additives should be added to the slurry in order to improve the clogging phenomena at the tunnel face. In this study, the effect of the carbon dioxide gas as an additive to the slurry instead of chemical compounds on the capability of enhancing the clogging in the tunnel face is investigated. Bubbles arising from the carbonate-added slurry are trapped in the soil voids enhancing the clogging capability. This effect is studied in this paper by performing laboratory model tests simulating in-situ conditions, and by adopting the fine particle clogging theory. Tunnel face stability analysis was also performed and it was found that the effective size ($D_{10}$) of soils which can guarantee tunnel stability utilizing the carbonate-added slurry increased from 1.0 mm up to 2.6 mm. Moreover, Stability analysis showed that the tunnel face is stable if the ${\lambda}$(deposition coefficient) value is greater than $0.007sec^{-1}$.