• Title/Summary/Keyword: soil addition

Search Result 2,769, Processing Time 0.061 seconds

Strengthening of cement blended soft clay with nano-silica particles

  • Thomas, Geethu;Rangaswamy, Kodi
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.505-516
    • /
    • 2020
  • In recent years, Nano-technology significantly invaded the field of Geotechnical engineering, particularly in soil stabilisation techniques. Stabilisation of weak soil is envisioned to modify various soil characteristics by the addition of natural or synthetic materials into the virgin soil. In the present study, laboratory experiments were executed to investigate the influence of nano-silica particles in the consistency limits, compressive strength of the soft clay blended with cement. The results revealed that the high compressibility behaviour of soft clay modified to medium-stiff condition with fewer dosages of cement and nano-silica. The mechanism behind the strength development is verified with the previous researches as well as from Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction test (XRD) and Scanning Electron Microscopy (SEM) analysis. Based on the results, the presence of nano-silica in soft clay blended with cement has a positive effect on the behaviour of soil. This technique proves to be very economical and less detrimental to the environment.

Development of design method using Limit Equilibrium Method applying to vertical excavation reinforcing by soil-nailing (쏘일네일 보강 연직굴착면의 한계 평형법을 이용한 설계기법 개발)

  • Lee, Seom-Beom;Lee, In;Yun, Bae-Sik;Kim, Hong-Taek
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.47
    • /
    • pp.56-62
    • /
    • 2008
  • In order to apply the Limit Equilibrium Method generally used for the slope stability analysis to the vertical excavation walls reinforced by soil-nailing, in this study, the Limit Equilibrium Method for the temporary shoring facilities reinforced by soil-nailing was proposed, which is based on the stability for the horizontal displacement. In this study, the relation of the internal friction angles of the ground and the vertical excavation depths was arranged, which is satisfying the stability on the horizontal displacement by using the verification of the Limit Equilibrium Method. And then, the rational reinforcing length of soil-nailing was proposed for the critical areas. In addition, the modified safety ratio satisfying the stability on the horizontal displacement was proposed, when the Limit Equilibrium Method was applied to the vertical excavation walls reinforced by soil-nailing.

  • PDF

Analysis of Earthquake Response Data Recorded from the Hualien Large-Scale Seismic Test (Hualien 대형내진모델시험의 지진응답 계측데이타 분석)

  • 현창헌
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.335-342
    • /
    • 1998
  • A soil-structure interaction (SSI) experiment is being conducted in a seismically active region in Hualien, Taiwan. To obtain earthquake data for quantifying SSI effects and providing a basis to benchmark analysis methods, a 1/4-th scale cylindrical concrete containment model similar in shape to that of a nuclear power plant containment was constructed in the field where both the containment model and its surrounding soil, surface and sub-surface, are extensively instrumented to record earthquake data. In between September 1993 and May 1996, fifteen earthquakes with Richter magnitudes ranging from 4.2 to 6.2 were recorded. The recorded data were analyzed to provide information on the response characteristics of the Hualien soil-structure system, the SSI effects and the ground motion characteristics. The ground response data were analyzed for their variations with depth, with distance from the model structure, and at the same depths along downhole arrays. Variations of soil stiffness and soil-structure system frequencies were also evaluated against maximum ground motion. In addition, the site soil properties were derived based on correlation analysis of the recorded data and then correlated with those from the geotechnical investigation data.

  • PDF

Physical modelling of soil liquefaction in a novel micro shaking table

  • Molina-Gomez, Fausto;Caicedo, Bernardo;Viana da Fonseca, Antonio
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.229-240
    • /
    • 2019
  • The physical models are useful to understand the soil behaviour. Hence, these tools allow validating analytical theories and numerical data. This paper addresses the design, construction and implementation of a physical model able to simulate the soil liquefaction under different cyclic actions. The model was instrumented with a piezoelectric actuator and a set of transducers to measure the porewater pressures, displacements and accelerations of the system. The soil liquefaction was assessed in three different grain size particles of a natural sand by applying a sinusoidal signal, which incorporated three amplitudes and the fundamental frequencies of three different earthquakes occurred in Colombia. In addition, such frequencies were scaled in a micro shaking table device for 1, 50 and 80 g. Tests allowed identifying the liquefaction susceptibility at various frequency and displacement amplitude combinations. Experimental evidence validated that the liquefaction susceptibility is higher in the fine-grained sands than coarse-grained sands, and showed that the acceleration of the actuator controls the phenomena trigging in the model instead of the displacement amplitude.

A Study on Effects of Oil Contaminated Soil on the Growth of Plant (유류오염토양이 식물식생에 미치는 영향에 관한 연구)

  • Choi, Min-Zoo;Kim, Joo-Young;Kim, Jung-Hoon;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • Oil contamination soil has been one of the most environmental social issues for decades in the inside and outside of country. The law of soil environmental preservation was carried out in the 1990s and the government controlled not only soil environment management and the remediation of contaminated soil but also promoted the development of remedial technology and cleanup business of contaminated soil by national policy. In addition to agriculture areas, the main oil contaminated sites are a gas station, oil reservoir, petro-chemical complex, site of railway carriage base and military camp. The contamination-frequency of agriculture area and effect sites are low but it has significantly important area on account of producing food for human beings. Therefore, we should be concerned about oil contamination damage of agriculture area. The oil contamination damage of agriculture area influenced drop of birth and breeding since the oil directly adheres to seeds and farm products even diffusion of contaminated soil to cultivation area. The studies of the crops and the food vegetation has not enough detailed data caused by the incident of oil contamination. This study investigated the effect of oil in germination and growth of selected plant seeds. In this study, we try to verify whether the oil contamination by accidents on farmland influenced the damage of farm produce and the mutual relation both oil contaminated soil or the vegetation of crops. The impact of oil on plant development was followed by phytotoxicity assessments. The plants exhibited visual symptoms of stress, growth reduction and perturbations in developmental parameters. The increase of the degree of pollution induced more marked effects in plants, likely because of the physical effects of oil. The relationships between the phytotoxicity contents of plants and growth reduction suggest a chemical toxicity of fuel oil. In addition, while cleaned up the contaminated soil under the standard of contaminated soil we examined it was suitable for region standard and it may have practical possibility for fill material of construction of afforestation and molding soil of landfill.

Interpreting in situ Soil Water Characteristics Curve under Different Paddy Soil Types Using Undisturbed Lysimeter with Soil Sensor

  • Seo, Mijin;Han, Kyunghwa;Cho, Heerae;Ok, Junghun;Zhang, Yongseon;Seo, Youngho;Jung, Kangho;Lee, Hyubsung;Kim, Gisun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.336-344
    • /
    • 2017
  • The soil water characteristics curve (SWCC) represents the relation between soil water potential and soil water content. The shape and range of SWCC according to the relation could vary depending on soil characteristics. The objective of the study was to estimate SWCC depending on soil types and layers and to analyze the trend among them. To accomplish this goal, the unsaturated three soils were considered: silty clay loam, loam, and sandy loam soils. Weighable lysimeters were used for exactly measuring soil water content and soil water potential. Two fitting models, van Genuchten and Campbell, were applied. Two models entirely fitted well the measured SWCC, indicating low RMSE and high $R^2$ values. However, the large difference between the measured and the estimated was found at the 30 cm layer of the silty clay loam soil, and the gap was wider as soil water potential increased. In addition, the non-linear decrease of soil water content according to the increase of soil water potential tended to be more distinct in the sandy loam soil and at the 10 cm layer than in the silty clay loam soil and at the lower layers. These might be seen due to the various factors such as not only pore size distribution, but also cracks by high clay content and plow pan layers by compaction. This study clearly showed difficulty in the estimation of SWCC by such kind of factors.

Influence of Physicochemical Properties on Cesium Adsorption onto Soil (토양의 물리화학적 특성이 세슘 흡착에 미치는 영향)

  • Park, Sang-Min;Lee, Jeshin;Kim, Young-Hun;Lee, Jeung-Sun;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • Cesium (Cs) generated by nuclear accidents is one of the most hazardous radionuclides because of its gamma radiation and long half-life. Especially, when Cs is exposed on the soil environments, Cs is mainly adsorbed on the topsoil and is strongly combined with tiny soil particle including clay minerals. The adsorption of Cs onto soil can vary depending on various physicochemical properties of soil. In this study, the adsorption characteristics between soil and Cs were investigated according to various physicochemical properties of soil including organic matter contents, cation exchange capacity (CEC), soil particle size, and the types of clay minerals. Soil organic matter inhibited the adsorption of Cs onto the soil because organic matter was blocking the soil surface. In addition, it was estimated that the CEC of the soil influenced the adsorption of Cs onto the soil. Moreover, more Cs was adsorbed as the soil particles size decreased. It was estimated that Cs was mostly adsorbed onto the topsoil, this is related to the clay mineral. Therefore, soil organic matter, CEC, soil particle size, and clay minerals are considered the key factors that can influence the adsorption characteristics between soil and Cs.

Effects of Soil Nitrogen Addition on Microbial Activities and Litter Decomposition (토양 내 질소 증가가 미생물 활성 및 식물체의 분해에 미치는 영향)

  • Chae, Hee Myung;Lee, Sang Hoon;Cha, Sang Sub;Shim, Jae Kuk
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.276-288
    • /
    • 2013
  • The present study investigates the effects of elevated soil nitrogen on growth and decomposition of Oryza sativa shoots. The plants were cultivated in greenhouse until leaf senescence and the total biomass of the plant increased 1.9 times at nitrogen addition plot. Total C and N content in shoot increased; however, lignin, C/N, and lignin/N levels decreased in the N-treated soil. The shoot litters collected from the control and N-treated soil were tested for decay and microbial biomass, $CO_2$ evolution, and enzyme activities during decomposition on the control and N-treated soil at $25^{\circ}C$ microcosm. The remaining mass of the shoot litter was approximately 6% higher in the litter collected from the control soil (53.0%) than the litter collected from high N-treated soil (47.1%). However, the high N-containing litter exhibited faster decay in the control soil than in the N-treated soil. The litter containing high N, low C/N, and low lignin/N showed a higher decomposition rate than that of low quality litter. The N-addition showed decreased microbial biomass C and dehydrogenase activity in soil; however, it exhibited high microbial biomass N and urease activity in soil. When the high N-containing litter decays on the N-treated soil, the microbial biomass C increased rapidly at the initial phase of decomposition and decreased thereafter, and dehydrogenase activity was less that of other treatment; however, there was no effect on the microbial biomass N. The urease in the decomposing litter was highest during the early decomposition stage and dramatically decreased thereafter. The present findings suggested that the N-addition increased N content in litter, but inhibited the decomposition process of above-ground biomass in terrestrial ecosystems.

SVE & Bioventing Techniques for the Treatment of Hydrocarbon (SVE와 Bioventing 기술을 이용한 유류 오염토양의 복원)

  • 김무훈;강순기;조미영;정우성;박덕신
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.137-140
    • /
    • 2000
  • The purpose of this study is to see the effect of SVE (Soil Vapor Extraction) and Bioventing (biostimulation) hydrocarbon contaminated areas. The removal rate of VOC for three weeks were 17.43 kg on 3.6 ㎥/hr at steady-state. In the application of Bioventing, every flow rate were tested, and it was found that 4.0 ㎥/hr were adequate for best control of the system. At this stage, the addition of microbial agent accelerated the biodegradation of the hydrocarbon.

  • PDF

MODFLOW를 이용한 유류오염지역 지하수 유동 및 오염물질 이동 평가

  • 전권호;문철환;이진용;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.536-539
    • /
    • 2003
  • This study area has been contaminated by oils. To identify contaminated ranges and to assess the possibility of contamination dispersion, monitoring wells were installed and slug test, field soil permeability test, automatic or manual measurement of groundwater table, and groundwater quality analyses in field and laboratory were performed. In addition, a groundwater modeling program was used to assess the possibility of oil contamination dispersion, based on field data and groundwater quality data. The results showed that concentration of oil contaminants in groundwater have been decreased by dispersion and adsorption.

  • PDF