DOI QR코드

DOI QR Code

Effects of Soil Nitrogen Addition on Microbial Activities and Litter Decomposition

토양 내 질소 증가가 미생물 활성 및 식물체의 분해에 미치는 영향

  • 채희명 (중앙대학교 자연과학대학 생명과학과) ;
  • 이상훈 (중앙대학교 자연과학대학 생명과학과) ;
  • 차상섭 (중앙대학교 자연과학대학 생명과학과) ;
  • 심재국 (중앙대학교 자연과학대학 생명과학과)
  • Received : 2013.06.05
  • Accepted : 2013.06.13
  • Published : 2013.06.30

Abstract

The present study investigates the effects of elevated soil nitrogen on growth and decomposition of Oryza sativa shoots. The plants were cultivated in greenhouse until leaf senescence and the total biomass of the plant increased 1.9 times at nitrogen addition plot. Total C and N content in shoot increased; however, lignin, C/N, and lignin/N levels decreased in the N-treated soil. The shoot litters collected from the control and N-treated soil were tested for decay and microbial biomass, $CO_2$ evolution, and enzyme activities during decomposition on the control and N-treated soil at $25^{\circ}C$ microcosm. The remaining mass of the shoot litter was approximately 6% higher in the litter collected from the control soil (53.0%) than the litter collected from high N-treated soil (47.1%). However, the high N-containing litter exhibited faster decay in the control soil than in the N-treated soil. The litter containing high N, low C/N, and low lignin/N showed a higher decomposition rate than that of low quality litter. The N-addition showed decreased microbial biomass C and dehydrogenase activity in soil; however, it exhibited high microbial biomass N and urease activity in soil. When the high N-containing litter decays on the N-treated soil, the microbial biomass C increased rapidly at the initial phase of decomposition and decreased thereafter, and dehydrogenase activity was less that of other treatment; however, there was no effect on the microbial biomass N. The urease in the decomposing litter was highest during the early decomposition stage and dramatically decreased thereafter. The present findings suggested that the N-addition increased N content in litter, but inhibited the decomposition process of above-ground biomass in terrestrial ecosystems.

본 연구는 질소 시비에 의해 증가된 토양 질소가 식물의 성장 및 식물체의 화학적 조성에 미치는 영향과 이로 인한 분해에서의 변화를 확인하고자 야외성장실험과 분해실험을 진행하였다. 온실에서 질소 시비구와 비시구 토양에 각각 벼를 재배하였으며 식물이 성숙한 뒤 수확하여 C, N, lignin, cellulose 함량을 측정하였다. 대조구와 질소 처리구 토양에서 재배된 식물의 개체 당 평균 건중량은 각각 0.70 g, 1.32 g로 질소 시비에 의해 1.9배 증가하였다. 식물체의 N 및 C 함량은 질소 시비에 의해 증가하였고 lignin, C/N, lignin/N, cellulose/N은 감소하였다. 이후, 수확된 식물의 지상부는 microcosm 분해실험에 이용되었으며, 분해 식물체에서 건중량의 변화, microbial biomass C와 microbial biomass N, 그리고 dehydrogenase와 urease 활성을 측정하고, 분해과정 중 발생하는 $CO_2$의 양을 정량하였다. 대조구 토양에서 분해시킨 대조구 식물체와 질소 처리구 식물체, 그리고 질소를 처리한 토양에서 분해시킨 질소 처리구 식물체의 잔존량은 각각 초기 건중량의 53.0%, 47.1%, 53.6%를 나타내었다. 질소 시비는 식물체에서 N 함량을 높이고 C/N 및 lignin/N을 낮추어 식물체의 분해를 촉진하였으나, 분해 과정에서의 토양 질소처리는 분해를 억제하였다. 질소 시비에 의해 토양에서 microbial biomass C와 dehydrogenase 활성은 감소하였고, 반면에 microbial biomass N과 urease 활성은 증가하였다. 분해 중 발생한 $CO_2$의 양은 30일 이후부터 질소 시비에 의해 감소하였다. 분해 식물체에서 측정된 microbial biomass C는 질소 처리에 의해 초기에 증가하였으나 이후 저해되는 양상을 나타냈으며 microbial biomass N은 유의한 차이를 보이지 않았다. 질소 시비에 의해 분해 식물체에서 dehydrogenase 활성은 저해되었으며 urease는 분해 초기에 가장 높은 활성을 보였으나 분해 후기에 현저한 감소를 나타냈다. 본 실험에서 질소 시비는 식물의 성장을 증가시키고 식물체의 N 함량을 높여 화학적 조성의 변화를 일으키며 분해율을 증가시키나 분해 단계에서 질소의 시비는 미생물의 활성을 억제시켜 분해를 저해하는 결과를 나타내었다.

Keywords

References

  1. Aerts, R. and H. De Caluwe. 1997. Nutritional and plantmediated controls on leaf litter decomposition of Carex species. Ecology 78(1): 244-260.
  2. Agren, G.K., E. Bosatta and A.H. Magill. 2001. Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia 128: 94-98. https://doi.org/10.1007/s004420100646
  3. Ajwa, H.A., C.J. Dell and C.W. Rice. 1999. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization. Soil Biology and Biochemistry 31(5): 769-777. https://doi.org/10.1016/S0038-0717(98)00177-1
  4. Allen, A.S. and W.H. Schlesinger. 2004. Nutrient limitations to soil microbial biomass and activity in loblolly pine forests. Soil Biology and Biochemistry 36(4): 581-589. https://doi.org/10.1016/j.soilbio.2003.12.002
  5. Bakker, J.P. and F. Berendse. 1999. Constraints in the restoration of ecological diversity in grassland and heathland communities. Trends in Ecology & Evolution 14(2): 63-68. https://doi.org/10.1016/S0169-5347(98)01544-4
  6. Berg, B. and E. Matzner. 1997. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Review 5: 1-25. https://doi.org/10.1139/a96-017
  7. Berg, B., M. Berg, P. Bottner, E. Box, A. Breymeyer, R.C. de Anta, M.M. Couteaux, A. Gallardo, A. Escudero, W. Kartz, M. Madeira, E. Malkonen, C. McClaugherty, V. Meentemeyer, F. Munoz, P. Piussi, J. Remacle and A.V. de Santo. 1993. Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry 20: 127-159. https://doi.org/10.1007/BF00000785
  8. Carreiro, M., R. Sinsabaugh, D. Repert and D. Parkhurst. 2000. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81: 2359-2365. https://doi.org/10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2
  9. Cooke, J.E., T.A. Martin and J.M. Davis. 2005. Short-term physiological and developmental responses to nitrogen availability in hybrid poplar. New Phytologist 167(1): 41-52. https://doi.org/10.1111/j.1469-8137.2005.01435.x
  10. Dick, R.P., D.D. Myrold and E.A. Kerle. 1988. Microbial biomass and soil enzyme activities in compacted and rehabilitated skid trail soils. Soil Science Society of America Journal 52(2): 512-516. https://doi.org/10.2136/sssaj1988.03615995005200020038x
  11. Fisk, M.C. and S.K. Schmidt. 1996. Microbial responses to nitrogen additions in alpine tundra soil. Soil Biology and Biochemistry 28(6): 751-755. https://doi.org/10.1016/0038-0717(96)00007-7
  12. Fog, K. 1988. The effect of added nitrogen on the rate of decomposition of organic matter. Biological Reviews of the Cambridge Philosophical Society 63(3): 433-462. https://doi.org/10.1111/j.1469-185X.1988.tb00725.x
  13. Frankenberger, W.T. and W.A. Dick. 1983. Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America Journal 47(5): 945-951. https://doi.org/10.2136/sssaj1983.03615995004700050021x
  14. Frink, C.R., P.E. Waggoner and J.H. Ausubel. 1999. Nitrogen fertilizer: retrospect and prospect. Proceedings of the National Academy of Sciences 96(4): 1175-1180. https://doi.org/10.1073/pnas.96.4.1175
  15. Galloway, J.N., F.J. Dentener, D.G. Capone, E.W. Boyer, R.W. Howarth, S.P. Seitzinger, G.P. Asner, C.C. Cleveland, P.A. Green, E.A. Holland, D.M. Karl, A.F. Michaels, J.H. Porter, A.R. Townsend and C.J. Vorosmarty. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70(2): 153-226. https://doi.org/10.1007/s10533-004-0370-0
  16. Garcia, F.O. and C.W. Rice. 1994. Microbial biomass dynamics in tallgrass prairie. Soil Science Society of America Journal 58(3): 816-823. https://doi.org/10.2136/sssaj1994.03615995005800030026x
  17. Gijsman, A.J., H.F. Alarcon and R.J. Thomas. 1997. Root decomposition in tropical grasses and legumes, as affected by soil texture and season. Soil Biology and Biochemistry 29(9): 1443-1450. https://doi.org/10.1016/S0038-0717(97)00039-4
  18. Glatzel, G. 1990. The nitrogen status of Austrian forest ecosystems as influenced by atmospheric deposition, biomass harvesting and lateral organomass exchange. Plant and Soil 128(1): 67-74. https://doi.org/10.1007/BF00009397
  19. Goyal, S., M.M. Mishra, I.S. Hooda and R. Singh, 1992. Organic matter-microbial biomass relationships in field experiments under tropical conditions: Effects of inorganic fertilization and organic amendments. Soil Biology and Biochemistry 24(11): 1081-1084. https://doi.org/10.1016/0038-0717(92)90056-4
  20. Hart, S.C. and J.M. Stark. 1997. Nitrogen limitation of the microbial biomass in an old-growth forest soil. Ecoscience 4(1): 91-98.
  21. Heal, O.W., J.M. Anderson and M.J. Swift. 1997. Plant litter quality and decomposition: an historical overview, p. 3-30. In: Driven by nature-plant litter quality and decomposition (Cadisch, G. and K.E. Giller, eds.). CAB International, Wallingford.
  22. Hobbie, S.E. 2000. Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems 3(5): 484-494. https://doi.org/10.1007/s100210000042
  23. Hobbie, S.E. 2005. Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems 8(6): 644-656. https://doi.org/10.1007/s10021-003-0110-7
  24. Hobbie, S.E. and P.M. Vitousek. 2000. Nutrient limitation of decomposition in Hawaiian forests. Ecology 81(7): 1867-1877. https://doi.org/10.1890/0012-9658(2000)081[1867:NLODIH]2.0.CO;2
  25. Joergensen, R.G. and P.C. Brookes. 1990. Ninhydrin-reaction measurements of microbial biomass in 0.5 M $K_2SO_4$ soil extracts. Soil biology and Biochemistry 22(8): 1023-1027. https://doi.org/10.1016/0038-0717(90)90027-W
  26. Kandeler, E. and H. Gerber. 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils 6(1): 68-72.
  27. Kang, H. and D. Lee. 2005. Inhibition of extracellular enzyme activities in a forest soil by additions of inorganic nitrogen. Communications in Soil Science and Plant Analysis 36(15-16): 2129-2135. https://doi.org/10.1080/00103620500194650
  28. Kim, J.H. 2006. Atmospheric acid deposition : Nitrogen saturation of forests. Journal of Ecology and Field Biology 29(3): 305-321. https://doi.org/10.5141/JEFB.2006.29.3.305
  29. LeBauer, D.S. and K.K Treseder. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89: 371-379. https://doi.org/10.1890/06-2057.1
  30. Lee, H.S. and I.D. Lee. 2000. Effect of N fertilizer levels on the dry matter yield, quality and botanical composition in 8-species mixtures. Korean Journal of Animal Science 42: 727-734.
  31. Lee, K.H. and S. Jose. 2003. Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management 185(3): 263-273. https://doi.org/10.1016/S0378-1127(03)00164-6
  32. Lemus, R., E. Charles Brummer, C. Lee Burras, K.J. Moore, M.F. Barker and N.E. Molstad. 2008. Effects of nitrogen fertilization on biomass yield and quality in large fields of established switchgrass in southern Iowa, USA. Biomass and Bioenergy 32(12): 1187-1194. https://doi.org/10.1016/j.biombioe.2008.02.016
  33. Lovell, R.D., S.C. Jarvis and R.D. Bardgett. 1995. Soil microbial biomass and activity in long term grassland: effects of management changes. Soil Biology and Biochemistry 27(7): 969-975. https://doi.org/10.1016/0038-0717(94)00241-R
  34. Magill, A.H. and J.D. Alber. 1998. Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems. Plant and Soil 203(2): 301-311. https://doi.org/10.1023/A:1004367000041
  35. Manning, P., M. Saunders, R.D. Bardgett, M. Bonkowski, M.A. Bradford, R.J. Ellis, E. Kandeler, S. Marhan and D. Tscherko. 2008. Direct and indirect effects of nitrogen deposition on litter decompositon. Soil Biology and Biochemistry 40(3): 688-698. https://doi.org/10.1016/j.soilbio.2007.08.023
  36. Matson, P.A., K.A. Lohse and S.J. Hall. 2002. The globalization of nitrogen deposition: consequences for terrestrial ecosystems. AMBIO: A Journal of the Human Environment 31(2): 113-119.
  37. McCarty, G.W., D.R. Shogren and J.B. Bremner. 1992. Regulation of urease production in soil by microbial assimilation of nitrogen. Biology and Fertility of Soils 12: 261-264. https://doi.org/10.1007/BF00336041
  38. Melillo, J.M., J.D. Aber and J.F. Muratore. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63(3): 621-626. https://doi.org/10.2307/1936780
  39. Mersi Von, W. and F. Schinner. 1991. An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biology and Fertility of Soils 11(3): 216-220. https://doi.org/10.1007/BF00335770
  40. Mick, P., M.R. Down, A.H. Magill, K.J. Nadelhoffer and J.D. Alber. 2004. Decomposition litter as a sink for 15N-enriched addition to an oak forest and a red pine plantation. Forest Ecology and Management 196(1): 71-87. https://doi.org/10.1016/j.foreco.2004.03.013
  41. Norby, R.J. 1998. Nitrogen deposition: a component of global change analyses. New Phytologist 139(1): 189-200. https://doi.org/10.1046/j.1469-8137.1998.00183.x
  42. Prescott, C.E. 1996. Influence forest floor type on rates of litter decomposition in microcosms. Soil Biology and Biochemistry 28(10): 1319-1325. https://doi.org/10.1016/S0038-0717(96)00132-0
  43. Ross, D.J. and G.P. Sparling. 1993. Comparison of methods to estimate microbial C and N in litter and soil under Pinus radiata on a coastal sand. Soil Biology and Biochemistry 25: 1591-1599. https://doi.org/10.1016/0038-0717(93)90015-4
  44. Rowland, A.P. and J.D. Roberts. 1994. Lignin and cellulose fractionation in decomposition studies using acid detergent fibre methods. Communications in Soil Sciences and Plant Analysis 25: 269-277. https://doi.org/10.1080/00103629409369035
  45. Ryou, S.H., J.M. Kim and J.K. Shim. 2009. Studies on the decomposition of leaf litter containing heavy metals in Andong serpentine area, Korea I. Microcosm Experiment. Korean Journal of Environmental Biology 27(4): 353-362.
  46. Ryou, S.H., J.M. Kim, S.S. Cha and J.K. Shim. 2010. Decomposition of leaf litter containing heavy metals in the Andong serpentine area, Korea. Korean Journal of Environment and Ecology 24(4): 426-435.
  47. Saiya-Cork, K.R., R.L. Sinsabaugh and D.R. Zak. 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry 34: 1309-1315. https://doi.org/10.1016/S0038-0717(02)00074-3
  48. Sariyildiz, T. and J.M. Anderson. 2003. Interactions between litter quality, decomposition and soil fertility: a laboratory study. Soil Biology and Biochemistry 35: 391-399. https://doi.org/10.1016/S0038-0717(02)00290-0
  49. Seneviratne, G., L.H.J. Van Holm, L.J.A. Balachandra and S.A. Kulasooriya. 1999. Differential effects of soil properties on leaf nitrogen release. Biology and fertility of Soils 28(3): 238-243. https://doi.org/10.1007/s003740050488
  50. Shim, J.K., J.H. Shin and K.C. Yang. 2011. The effects estimation of heavy metals on the microbial activity during leaf litter decomposition. Korean Journal of Environment and Ecology 25(6): 887-892.
  51. Shin, J.H., S.K. Choi, M.H. Yeon, J.M. Kim and J.K. Shim. 2006. Early stage decomposition of emergent macrophytes. Journal of Ecology and Field Biology 29(6): 565-572. https://doi.org/10.5141/JEFB.2006.29.6.565
  52. Sinsabaugh, R.L., M.M. Carreiro and D.A. Repert. 2002. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60(1): 1-24. https://doi.org/10.1023/A:1016541114786
  53. Song, Y., C. Song, Y. Li, C. Hou, G. Yang and X. Zhu. 2013. Short-term effects of nitrogen addition and vegetation removal on soil chemical and biological properties in a freshwater marsh in Sanjiang Plain. Northeast China. Catena 104: 265-271. https://doi.org/10.1016/j.catena.2012.12.008
  54. Spiecker, H. 1999. Overview of recent growth trends in European forests. Water, Air, and Soil Pollution 116: 33-46. https://doi.org/10.1023/A:1005205515952
  55. Stevens, C.J., N.B. Dise, J.O. Mountford and D.J. Gowing. 2004. Impact of nitrogen deposition on the species richness of grassland. Science 303: 1876-1879. https://doi.org/10.1126/science.1094678
  56. Swift, M.J., O.W. Heal and J.M. Anderson. 1979. Decomposition in terrestrial ecosystems. Blackwell, Oxford.
  57. Taylor, B.R., D. Parkinson and W.F. Parsons. 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70(1): 97-104. https://doi.org/10.2307/1938416
  58. Treseder, K.K. 2008. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecology Letters 11(10): 1111-1120. https://doi.org/10.1111/j.1461-0248.2008.01230.x
  59. Vance, E.D., P.C. Brookes and D.S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19(6): 703-707. https://doi.org/10.1016/0038-0717(87)90052-6
  60. Vestgarden, L.S. 2001. Carbon and nitrogen turnover in the early stage of Scots pine (Pinus sylvestris L.) needle litter decomposition: effects of internal and external nitrogen. Soil Biology and Biochemistry 33(4): 465-474. https://doi.org/10.1016/S0038-0717(00)00187-5
  61. Vitousek, P.M. and R.W. Howarth. 1991. Nitrogen limitation on land and in the sea: How can it occur?. Biogeochemistry 13: 87-115.
  62. Vitousek, P.M. 1998. Foliar and litter nutrients, nutrient resorption, and decomposition in Hawaiian Metrosideros polymorpha. Ecosystems 1(4): 401-407. https://doi.org/10.1007/s100219900033
  63. Vitousek, P.M., J.D. Aber, R.H. Howarth, G.E. Likens, P.A. Matson, D.W. Schindler, W.H. Schlesinger and D.G. Tilman. 1997. Human alteration of the global nitrogen cycle: source and consequences. Ecological applications 7(3): 737-750.
  64. Weon, H.Y., J.S. Kwon, Y.K. Shin, S.H. Kim, J.S. Suh and W.Y. Choi. 2004. Effects of composted pig manure application on enzyme activities and microbial biomass of soil under Chinese cabbage cultivation. Korean Journal of Soil Science and Fertilizer 37(2): 109-115.