• Title/Summary/Keyword: soil Interaction

Search Result 1,162, Processing Time 0.044 seconds

A Study on 3D Evaluation and Reduction Method for Vibration of Track-Roadbed due to Railway Load (열차하중으로 인한 궤도-지반의 3D 진동평가 및 저감방법에 관한 연구)

  • Kang, Bo-Soon
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • The paper describes four practical cases of railway structure concerning a three-dimensional numerical approach to analyse dynamic soil-structure interaction(SSI)of railway tracks on layered soil under transient load in the time domain. The SSI-Model has been implemented in TDAPIII accounting for nonlinear properties of the track and soil. The approach can be also be used to calculate vibration propagation in the soil and its effect on nearby buildings and structure. The Method is applied to analyse the dynamic response of railway tracks due to a moving wheel set. Finally some sample are given in order to reduce the vibration at the point of emission, at the transmission path and the structure itself.

Numerical analysis of steel-soil composite (SSC) culvert under static loads

  • Beben, Damian;Wrzeciono, Michal
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.715-726
    • /
    • 2017
  • The paper presents a numerical analysis of a steel-soil composite (SSC) culvert in the scope of static (dead and live) loads. The Abaqus program based on the finite element method (FEM) was used for calculations. Maximum displacements were obtained in the shell crown, and the largest stresses in the haunches. Calculation results were compared with the experimental ones and previous calculations obtained from the Autodesk Robot Structural Analysis (ARSA) program. The shapes of calculated displacements and stresses are similar to those obtained with the experiment, but the absolute values were generally higher than measured ones. The relative differences of calculated and measured values were in the range of 5-23% for displacements, and 15-42% for stresses. Developed calculation model of the SSC culvert in the Abaqus program allows obtaining reasonable values of internal forces in the culvert. Using both calculation programs, the relative differences for displacements were in the range of 15-39%, and 17-44% for stresses in favour of the Abaqus program. Three design methods (Sundquist-Pettersson, Duncan and CHBDC) were used to calculate the axial thrusts and bending moments. Obtained values were compared with test results. Generally, the design methods have conservative assumptions, especially in the live loads distribution, safety factors and consideration the interaction between soil and steel structure.

Seismic response of bridge pier supported on rocking shallow foundation

  • Deviprasad, B.S.;Dodagoudar, G.R.
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.73-84
    • /
    • 2020
  • In the seismic design of bridges, formation of plastic hinges plays an important role in the dissipation of seismic energy. In the case of conventional fixed-base bridges, the plastic hinges are allowed to form in the superstructure alone. During seismic event, such bridges may be safe from collapse but the superstructure undergoes significant plastic deformations. As an alternative design approach, the plastic hinges are guided to form in the soil thereby utilizing the inevitable yielding of the soil. Rocking foundations work on this concept. The formation of plastic hinges in the soil reduces the load and displacement demands on the superstructure. This study aims at evaluating the seismic response of bridge pier supported on rocking shallow foundation. For this purpose, a BNWF model is implemented in OpenSees platform. The capability of the BNWF model to capture the SSI effects, nonlinear behavior and dynamic loading response are validated using the centrifuge and shake table test results. A comparative study is performed between the seismic response of the bridge pier supported on the rocking shallow foundation and conventional fixed-base foundation. Results of the study have established the beneficial effects of using the rocking shallow foundation for the seismic response analysis of the bridge piers.

Design of integral abutment bridges for combined thermal and seismic loads

  • Far, Narges Easazadeh;Maleki, Shervin;Barghian, Majid
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.415-430
    • /
    • 2015
  • Integral abutment bridges have many advantages over bridges with expansion joints in terms of economy and maintenance costs. However, in the design of abutments of integral bridges temperature loads play a crucial role. In addition, seismic loads are readily transferred to the substructure and affect the design of these components significantly. Currently, the European and American bridge design codes consider these two load cases separately in their recommended design load combinations. In this paper, the importance and necessity of combining the thermal and seismic loads is investigated for integral bridges. A 2D finite element combined pile-soil-structure interactive model is used in this evaluation. Nonlinear behavior is assumed for near field soil behind the abutments. The soil around the piles is modeled by nonlinear springs based on p-y curves. The uniform temperature changes occurring at the time of some significant earthquakes around the world are gathered and applied simultaneously with the corresponding earthquake time history ground motions. By comparing the results of these analyses to prescribed AASHTO LRFD load combinations it is observed that pile forces and abutment stresses are affected by this new load combination. This effect is more severe for contraction mode which is caused by negative uniform temperature changes.

Seismic Responses of Multi-DOF Structures with Shallow Foundation Using Centrifuge Test (원심모형실험을 활용한 얕은 기초가 있는 다자유도 구조물의 지진응답)

  • Kim, Dong Kwan;Kim, Ho Soo;Kim, Jin Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.117-125
    • /
    • 2022
  • In this study, centrifuge model tests were performed to evaluate the seismic response of multi-DOF structures with shallow foundations. Also, elastic time history analysis on the fixed-base model was performed and compared with the experimental results. As a result of the centrifuge model test, earthquake amplification at the fundamental vibration frequency of the soil (= 2.44 Hz) affected the third vibration mode frequency (= 2.50 Hz) of the long-period structure and the first vibration mode (= 2.27 Hz) of the short-period structure. The shallow foundation lengthened the periods of the structures by 14-20% compared to the fixed base condition. The response spectrum of acceleration measured at the shallow foundation was smaller than that of free-field motion due to the foundation damping effect. The ultimate moment capacity of the soil-foundation system limited the dynamic responses of the multi-DOF structures. Therefore, the considerations on period lengthening, foundation damping, and ultimate moment capacity of the soil-foundation system might improve the seismic design of the multi-DOF building structures.

Analysis of shallow footings rested on tensionless foundations using a mixed finite element model

  • Lezgy-Nazargah, M.;Mamazizi, A.;Khosravi, H.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.379-394
    • /
    • 2022
  • Shallow footings usually belonged to the category of thick plate structures. For accurate analysis of thick plates, the contribution of out-of-plane components of the stress tensor should be considered in the formulation. Most of the available shallow footing models are based on the classical plate theories, which usually neglect the effects of the out-of-plane stresses. In this study, a mixed-field plate finite element model (FEM) is developed for the analysis of shallow footings rested on soil foundations. In addition to displacement field variables, the out-of-plane components of the stress tensor are also assumed as a priori unknown variables. For modeling the interaction effect of the soil under and outside of the shallow footings, the modified Vlasov theory is used. The tensionless nature of the supporting soil foundation is taken into account by adopting an incremental, iterative procedure. The equality requirement of displacements at the interface between the shallow footing and soil is fulfilled using the penalty approach. For validation of the present mixed FEM, the obtained results are compared with the results of 3D FEM and previous results published in the literature. The comparisons show the present mixed FEM is an efficient and accurate tool for solving the problems of shallow footings rested on subsoil.

Soil Evaporation Evaluation Using Soil Moisture Measurements at a Hillslope on a Mountainous Forest (산림 사면에서 실측 토양수분을 이용한 토양증발평가)

  • Gwak, Yong-Seok;Kim, Sang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.557-568
    • /
    • 2012
  • In order to understand the hydrological processes on the mountainous forest, the configuration of soil evaporation (E) out of evapotranspiration (ET) is a challenging and important topic. In this study, we attempted to understand the soil evaporation process for a humid forest hillslope via measuring and analyzing soil moistures with a sampling interval in 2 hours at three locations for 10 days between May 22th and 31th 2009. Two methods were used to estimate soil evaporation in every 2hr; one is a method using soil moisture measurement ($E_{SM}$), the others methods are based on Penman equation (Penman (1948), Staple (1974), Konukcu (2007), Equilibrium Penman ($E_{equili}$)). As a critical parameter in determining $E_{SM}$, the dry surface layer (DSL), was estimated using energy balance equation. The accumulated soil evaporation ($E_{SM}$) of A, B, C points were estimated as 2.09, 1.08 and 2.88 mm, respectively. The estimated evaporation of Penman (1948), Staple (1974), Konukcu (2007), $E_{equili}$ were 4.91, 8.80, 8.63 and 3.28 mm. The proposed method with soil moisture measurement showed lower soil evaporations than the other conventional methods. The increasing soil temperature and interaction between soil and atmosphere due to existence of litter and DSL are considered as dominant factors for soil evaporation. The $E_{SM}$ has the apparent lag time between 2 and 4 hr compared with $E_{equili}$ and net radiation. The DSL and surface resistance ($r_s$) were increased as soil moisture was decreased for in this study. The estimated DSL through the temporal distribution analysis of soil moisture and tension measurements was also similar to that of the energy balance relationship.

Effect of Suboptimal Nutritional Status on Mineral Uptake and Carbohydrate Metabolism in Tomato Plants

  • Sung, Jwakyung;Lee, Sangmin;Lee, Suyeon;Kim, Rogyoung;Lee, Yejin;Yun, Hongbae;Ha, Sangkeun;Song, Beomheon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.351-358
    • /
    • 2013
  • A suitable supply of mineral elements into shoot via a root system from growth media makes plants favorable growth and yield. The shortage or surplus of minerals directly affects overall physiological reactions to plants and, especially, strongly influences carbohydrate metabolism as a primary response. We have studied mineral uptake and synthesis and translocation of soluble carbohydrates in N, P or K-deficient tomato plants, and examined the interaction between soluble carbohydrates and mineral elements. Four-weeks-old tomato plants were grown in a hydroponic growth container adjusted with suboptimal N ($0.5mmol\;L^{-1}\;Ca(NO_3)2{\cdot}4H_2O$ and $0.5mmol\;L^{-1}\;KNO_3$), P ($0.05mmol\;L^{-1}\;KH_2PO_4$), and K ($0.5mmol\;L^{-1}\;KNO_3$) for 30 days. The deficiency of specific mineral element led to a significant decrease in its concentration and affected the concentration of other elements with increasing treatment period. The appearance of the reduction, however, differed slightly between elements. The ratios of N uptake of each treatment to that in NPK sufficient tomato shoots were 4 (N deficient), 50 (P deficient), and 50% (K deficient). The P uptake ratios were 21 (N deficient), 19 (P deficient), and 28% (K deficient) and K uptake ratios were 11 (N deficient), 46 (P deficient), and 7% (K deficient). The deficiency of mineral elements also influenced on carbohydrate metabolism; soluble sugar and starch was substantially enhanced, especially in N or K deficiency. In conclusion, mineral deficiency leads to an adverse carbohydrate metabolism such as immoderate accumulation and restricted translocation as well as reduced mineral uptake and thus results in the reduced plant growth.

Assessment of Soil Loss in Irrigation Reservoir based on GIS (GIS를 이용한 관개용 저수지의 토사유실량 산정에 관한 연구)

  • Park, Woo Sik;Hong, Soon Heon;Ahn, Chang Hwan;Choi, Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.439-446
    • /
    • 2013
  • This paper is about assessment of soil loss in irrigation reservoir based on GIS. Natural disaster caused by soil loss whose natural incidence has been rapidly reduced due to successful tree planting campaign shows high potential risk, since the latest localized heavy rain resulted from extreme weather event and artificial land development acts as direct factors for land disaster. To prevent it, various techniques and technologies have been used to predict effect of soil loss. However, reliability of techniques and technologies to predict its effect precisely is relatively low so far because the natural disaster by soil loss is taken place by complicated interaction between possible factors and direct factors. Geospatial approach is essential to examine these interactions. In this regard, this study will provide detailed plan to improve prediction reliability for soil loss of irrigation reservoir, using GIS that has Hydrologic -Topographical parameter and digital map as its input parameters.

Seismic Responses of Wall-Slab Apartment Building Structures Built on the Soft Soil Layer Considering the Stiffnesses of a Foundation-Soil System (연약지반의 기초지반강성을 고려한 벽식구조 아파트의 지진응답)

  • 김지원;김용석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.19-27
    • /
    • 2001
  • In this seismic analyses of structures, it is well recognized that the effects of soil-structure interaction can not be ignored and seismic responses of a structure taking into account the stiffnesses of a foundation-soil system show the significant difference from those with a rigid base. However, current seismic analyses of apartment building structures were carried out with the rigid base ignoring the characteristics of the foundation and the properties of the underlying soil. In this study, seismic analyses of wall-slob type apartment buildings which have a particular structural type were carried out taking into account the soft soil layer comparing seismic response spectra of a flexible base with those of a rigid base and UBC-97. Low-rise or middle height wall-slab type apartment buildings built on the deep soft soil layer showed a rigid body motion with the reduced seismic responses due to the base isolation effect, indicating that it is considerably safe but uneconomical to utilize the design spectra of UB-97 for the seismic design of wall-slab type apartment buildings due to conservative design.

  • PDF