• Title/Summary/Keyword: soil Interaction

Search Result 1,162, Processing Time 0.026 seconds

Lateral capacity of piles in layered soil: a simple approach

  • Mandal, Bikash;Roy, Rana;Dutta, Sekhar Chandra
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.571-584
    • /
    • 2012
  • Appropriate assessment of lateral capacity of pile foundation is known to be a complex problem involving soil-structure interaction. Having reviewed the available methods in brief, relative paucity of simple and rational technique to evaluate lateral capacity of pile in layered soil is identified. In this context, two efficient approaches for the assessment of lateral capacity of short pile embedded in bi-layer cohesive deposit is developed. It is presumed that the allowable lateral capacity of short pile is generally dictated by the permissible lateral displacement within which pile-soil system may be assumed to be elastic. The applicability of the scheme, depicted through illustration, is believed to be of ample help at least for practical purpose.

Sliding Conditions at the Interface between Soil and Underground Structure (지반과 지하구조물 경계의 미끄러짐 조건에 관한 연구)

  • 김대상
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.7-11
    • /
    • 2002
  • By focusing on the resonant vibration mode of soil-underground structure system, this paper obtained dynamic soil stiffness and easy sliding conditions at the interface between soil and underground structure. Multi-step method is employed to isolate two primary causes of soil-structure interaction. Mohr-Coulomb criterion is used to determine the threshold level of the sliding. To find out the conditions the interface slides easily, parametric studies are performed about the factors governing sliding, which are the size and location of underground structures, ground condition, the configuration of surface deposit and interface friction coefficients.

Sand-Nonwoven geotextile interfaces shear strength by direct shear and simple shear tests

  • Vieira, Castorina Silva;Lopes, Maria de Lurdes;Caldeira, Laura
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.601-618
    • /
    • 2015
  • Soil-reinforcement interaction mechanism is an important issue in the design of geosynthetic reinforced soil structures. This mechanism depends on the soil properties, reinforcement characteristics and interaction between these two elements (soil and reinforcement). In this work the shear strength of sand/geotextile interfaces were characterized through direct and simple shear tests. The direct shear tests were performed on a conventional direct shear device and on a large scale direct shear apparatus. Unreinforced sand and one layer reinforced sand specimens were characterized trough simple shear tests. The interfaces shear strength achieved with the large scale direct shear device were slightly larger than those obtained with the conventional direct shear apparatus. Notwithstanding the differences between the shear strength characterization through simple shear and direct shear tests, it was concluded that the shear strength of one layer reinforced sand is similar to the sand/geotextile interface direct shear strength.

A study on the topographical and geotechnical effects in 2-D soil-structure interaction analysis under ground motion

  • Duzgun, Oguz Akin;Budak, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.40 no.6
    • /
    • pp.829-845
    • /
    • 2011
  • This paper evaluates the effects of topographical and geotechnical irregularities on the dynamic response of the 2-D soil-structure systems under ground motion by coupling finite and infinite elements. A numerical procedure is employed, and a parametric study is carried out for single-faced slope topographies. It is concluded that topographic conditions may have important effects on the ground motion along the slope. The geotechnical properties of the soil will also have significantly amplified effects on the whole system motion, which cannot be neglected for design purposes. So, dynamic response of a soil-structure systems are primarily affected by surface shapes and geotechnical properties of the soil. Location of the structure is another parameter affecting the whole system response.

Evaluation of Soil Stiffness Variability Effects on Soil-Structure Interaction Response of Nuclear Power Plant Structure (지반강성의 변동성이 원전구조물의 지반-구조물 상호작용 응답에 미치는 영향 분석)

  • Kim, Jae Min;Noh, Tae Yong;Huh, Jungwon;Kim, Moon Soo;Hyun, Chang Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.63-74
    • /
    • 2015
  • This study investigated the influence of probabilistic variability in stiffness and nonlinearity of soil on response of nuclear power plant (NPP) structure subjected to seismic loads considering the soil-structure interaction (SSI). Both deterministic and probabilistic methods have been employed to evaluate the dynamic responses of the structure. For the deterministic method, $SRP_{min}$ method given in USNRC SRP 3.7.2(2013) (envelope of responses using three shear modulus profiles of lower bound($G_{LB}$), best estimate($G_{BE}$) and upper bound($G_{UB}$)) and $SRP_{max}$ method (envelope of responses by more than three ground profiles within range of $G_{LB}{\leq}G{\leq}G_{UB}$) have been considered. The probabilistic method uses the Latin Hypercube Sampling (LHS) that can capture probabilistic feature of soil stiffness defined by the median and the standard deviation. These analysis results indicated that 1) number of samples shall be larger than 60 to apply the probabilistic approach in SSI analysis and 2) in-structure response spectra using equivalent linear soil profiles considering the nonlinear behavior of soil medium can be larger than those based on low-strain soil profiles.

Failure of circular tunnel in saturated soil subjected to internal blast loading

  • Han, Yuzhen;Liu, Huabei
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.421-438
    • /
    • 2016
  • Explosions inside transportation tunnels might result in failure of tunnel structures. This study investigated the failure mechanisms of circular cast-iron tunnels in saturated soil subjected to medium internal blast loading. This issue is crucial to tunnel safety as many transportation tunnels run through saturated soils. At the same time blast loading on saturated soils may induce residual excess pore pressure, which may result in soil liquefaction. A series of numerical simulations were carried out using Finite Element program LS-DYNA. The effect of soil liquefaction was simulated by the Federal Highway soil model. It was found that the failure modes of tunnel lining were differed with different levels of blast loading. The damage and failure of the tunnel lining was progressive in nature and they occurred mainly during lining vibration when the main event of blast loading was over. Soil liquefaction may lead to more severe failure of tunnel lining. Soil deformation and soil liquefaction were determined by the coupling effects of lining damage, lining vibration, and blast loading. The damage of tunnel lining was a result of internal blast loading as well as dynamic interaction between tunnel lining and saturated soil, and stress concentration induced by a ventilation shaft connected to the tunnel might result in more severe lining damage.

Fragility evaluation of integral abutment bridge including soil structure interaction effects

  • Sunil, J.C.;Atop, Lego;Anjan, Dutta
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.201-213
    • /
    • 2021
  • Contrast to the conventional jointed bridge design, integral abutment bridges (IABs) offer some marked advantages like reduced maintenance and enhanced service life of the structure due to elimination of joints in the deck and monolithic construction practices. However, the force transfer mechanism during seismic and thermal movements is a topic of interest owing to rigid connection between superstructure and substructure (piers and abutments). This study attempts to model an existing IAB by including the abutment backfill interaction and soil-foundation interaction effects using Winkler foundation assumption to determine its seismic response. Keeping in view the significance of abutment behavior in an IAB, the probability of damage to the abutment is evaluated using fragility function. Incremental Dynamic Analysis (IDA) approach is used in this regard, wherein, nonlinear time history analyses are conducted on the numerical model using a selected suite of ground motions with increasing intensities until damage to abutment. It is concluded from the fragility analysis results that for a MCE level earthquake in the location of integral bridge, the probability of complete damage to the abutment is minimal.

Numerical Modeling of 1g Shaking Table Model Pile Tests for Evaluating Dynamic Soil-Pile Interaction (지반-말뚝 동적 상호 작용 평가를 위한 1g 진동대 실험의 수치 모델링)

  • Oh, Man-Kyo;Kim, Seong-Hwan;Han, Jin-Tae;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.173-183
    • /
    • 2010
  • Numerical analysis using a three dimensional finite element program(ABAQUS) is a powerful method which can evaluate the soil-pile-structure interaction under the dynamic loading and reduce the computation time significantly, but has not be widely used because modeling a soil-pile system and setting the parameter for the entire model are difficult and a three dimensional finite element program is not user friendly. However, a three dimensional finite element program is expected to be widely used because of advance in research of modeling technique and development of the modeling and visualization. In this study, ABAQUS is used to simulate the 1g shaking table model pile test, and the numerical results are compared with the 1g shaking table test results. The application about the soil stiffness and boundary condition change is estimated and then parametric study for various input acceleration amplitudes, various input frequencies, and various surcharge is carried out.

  • PDF

Seismic response of soil-structure interaction using the support vector regression

  • Mirhosseini, Ramin Tabatabaei
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.115-124
    • /
    • 2017
  • In this paper, a different technique to predict the effects of soil-structure interaction (SSI) on seismic response of building systems is investigated. The technique use a machine learning algorithm called Support Vector Regression (SVR) with technical and analytical results as input features. Normally, the effects of SSI on seismic response of existing building systems can be identified by different types of large data sets. Therefore, predicting and estimating the seismic response of building is a difficult task. It is possible to approximate a real valued function of the seismic response and make accurate investing choices regarding the design of building system and reduce the risk involved, by giving the right experimental and/or numerical data to a machine learning regression, such as SVR. The seismic response of both single-degree-of-freedom system and six-storey RC frame which can be represent of a broad range of existing structures, is estimated using proposed SVR model, while allowing flexibility of the soil-foundation system and SSI effects. The seismic response of both single-degree-of-freedom system and six-storey RC frame which can be represent of a broad range of existing structures, is estimated using proposed SVR model, while allowing flexibility of the soil-foundation system and SSI effects. The results show that the performance of the technique can be predicted by reducing the number of real data input features. Further, performance enhancement was achieved by optimizing the RBF kernel and SVR parameters through grid search.

Active structural control via metaheuristic algorithms considering soil-structure interaction

  • Ulusoy, Serdar;Bekdas, Gebrail;Nigdeli, Sinan Melih
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.175-191
    • /
    • 2020
  • In this study, multi-story structures are actively controlled using metaheuristic algorithms. The soil conditions such as dense, normal and soft soil are considered under near-fault ground motions consisting of two types of impulsive motions called directivity effect (fault normal component) and the flint step (fault parallel component). In the active tendon-controlled structure, Proportional-Integral-Derivative (PID) type controller optimized by the proposed algorithms was used to achieve a control signal and to produce a corresponding control force. As the novelty of the study, the parameters of PID controller were determined by different metaheuristic algorithms to find the best one for seismic structures. These algorithms are flower pollination algorithm (FPA), teaching learning based optimization (TLBO) and Jaya Algorithm (JA). Furthermore, since the influence of time delay on the structural responses is an important issue for active control systems, it should be considered in the optimization process and time domain analyses. The proposed method was applied for a 15-story structural model and the feasible results were found by limiting the maximum control force for the near-fault records defined in FEMA P-695. Finally, it was determined that the active control using metaheuristic algorithms optimally reduced the structural responses and can be applied for the buildings with the soil-structure interaction (SSI).