• Title/Summary/Keyword: software functional safety

Search Result 79, Processing Time 0.027 seconds

Data Collection Methods to Standardize Protocols of Safety Supervision System (안전관제시스템 프로토콜 표준화를 위한 데이터 수집 방법)

  • Shin, Kwang-Ho;Um, Tae-Hwa;Lim, Dam-Sub;Ahn, Jin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.159-169
    • /
    • 2016
  • The current railway control system in Korea is comprised of signaling, electric rail power, communication, and maintenance systems that are independent of each other. Further, these systems have different mediums and protocols for transmitting the field equipment data to the central control system. The Safety Supervision System has as its purpose the collecting of safety-related data from each system to predict and prevent accidents, this system utilizes standard protocol. Safety-related data need to be collected from field data transmission devices of the existing control system, the data should be collected without affecting the communication of the existing system. In this study, sniffing skill, which is typically used for network traffic monitoring or security, is used to collect data. The problems arising from the use of sniffing devices are noted, and the Packet Conversion Node is proposed as a solution to the problems. Further, functional and performance testing were completed for the prototype, and the software architecture and packet conversion process were verified.

A Systems Engineering Approach to Implementing Hardware Cybersecurity Controls for Non-Safety Data Network

  • Ibrahim, Ahmad Salah;Jung, Jaecheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.101-114
    • /
    • 2016
  • A model-based systems engineering (MBSE) approach to implementing hardware-based network cybersecurity controls for APR1400 non-safety data network is presented in this work. The proposed design was developed by implementing packet filtering and deep packet inspection functions to control the unauthorized traffic and malicious contents. Denial-of-Service (DoS) attack was considered as a potential cybersecurity issue that may threaten the data availability and integrity of DCS gateway servers. Logical design architecture was developed to simulate the behavior of functions flow. HDL-based physical architecture was modelled and simulated using Xilinx ISE software to verify the design functionality. For effective modelling process, enhanced function flow block diagrams (EFFBDs) and schematic design based on FPGA technology were together developed and simulated to verify the performance and functional requirements of network security controls. Both logical and physical design architectures verified that hardware-based cybersecurity controls are capable to maintain the data availability and integrity. Further works focus on implementing the schematic design to an FPGA platform to accomplish the design verification and validation processes.

Using Model Checking to Verify an Automotive Electric Parking Brake System (자동차 전자식 주차 브레이크 시스템 안전 요구사항 검증을 위한 모델검증 적용)

  • Choi, Jun Yeol;Cho, Joon Hyung;Choi, Yun Ja
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.4
    • /
    • pp.167-176
    • /
    • 2017
  • There are increasing policies and safeguards to prevent various human resource losses with the development of automotive industry. Currently ISO26262 $1^{st}$ edition has been released in 2011 to ensure functional safety of electrical and electronic systems and the $2^{nd}$ edition will be released in the second half of 2016 as part of a trend. The E/E (Electrical & Electronics) system requirements verification is required through walk-through, 인스펙션, semi-formal verification and formal verification in ISO 26262. This paper describe the efficiency of model checking for the E/E system requirements verification by applying the product development project of ASIL (Automotive Safety Integrity Level) D for the electrical parking brake system.

Interoperability Test and Testing Tool for Railway Signaling System (철도신호시스템 상호운용성 검증 방법 및 지원도구의 개발)

  • Hwang, Jong-Gyu;Jo, Hyun-Jeong;Baek, Jong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5802-5809
    • /
    • 2015
  • Railway signaling system is the vital control system in charge of the core for safely train operation, its functional safety must be checked through sufficient verification. Until now, to verify the interoperability of developed railway signaling system, the on-site testing approaches have been applied after testing in laboratory with simulator. This approaches are some limited range of interoperable verification, so more systematic verification interoperability is required. In this paper, the three phases of interoperability verification for railway signaling system was proposed, and methodology for each phases are represented. And also The interoperability validation methodology and supported testing tool for railway signaling system is represented in this paper

Structural and Functional Measurements of a Space Truss Frame for Maintenance Works in Tunnels (터널의 유지보수공사 개선을 위한 가설 스페이스 트러스 프레임의 사용성 및 안정성 평가)

  • Lee, Dong Kyu;Kim, Do Hwan;Kim, Jin Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.92-98
    • /
    • 2012
  • This study shows details of a specific space truss frame structure devised to carry out maintenance and repair temporary works in tunnels. The purpose of this study is to verify structural safety and function of the innovative truss structure through an analysis tool, i.e.. ABAQUS, which is a suite of software application for finite element analysis and computer aided engineering. And then optimized size, i.e., thickness and diameter of truss members is evaluated in practice. In this study, construction methods in the temporary works are additionally represented by using the new space truss frame structure.

Functional Difference of the Human Body Movements on Gait with or without Smart phone in Elementary School Students (초등학생 스마트폰 사용 유·무 보행의 신체움직임 기능 차이)

  • Jang, Young Kwan;Shin, Hak Soo;Jang, In Young;Hong, Su Yeon;Kong, Se-Jin;Jeong, Wang Soo;Hah, Chong Ku
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.143-151
    • /
    • 2015
  • The purpose of this study was to investigate temporal and spatial variations, and moments of the lower extremities of gait while playing the game with smartphone under different curb-heights. Ten male elementary school students(from 10 years to 13 years old) participated in this study. Twelve infrared cameras(Oqus-500) and two force plates(9260AA) were used for collecting data and these were processed via Visual 3D software. In conclusion, with or without smartphone and with different curb-heights, the spatial and temporal parameters of walking were not the same and coefficients of variations were not consistent. The maximum joint moments of the lower extremities with or without smartphone were not statistically significant but those of hip and ankle joint were statistically significant with regard to the different heights of the curbs.

A Fault Management Design of Dual-Redundant Flight Control Computer for Unmanned Aerial Vehicle (무인기용 이중화 비행조종컴퓨터의 고장관리 설계)

  • Oh, Taegeun;Yoon, Hyung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.349-357
    • /
    • 2022
  • Since the flight control computer of unmanned aerial vehicle (UAV) is a flight critical equipment, it is necessary to ensure reliability and safety from the development step, and a redundancy-based fault management design is required in order to operate normally even a failure occurs. To reduce cost, weight and power consumption, the dual-redundant flight control system design is considered in UAV. However, there are various restrictions on the fault management design. In this paper, we propose the fault detection and isolation designs for the dual-redundant flight control computer to satisfy the safety requirements of an UAV. In addition, the flight control computer developed by applying the fault management design performed functional tests in the integrated test environment, and after performing FMET in the HILS, its reliability was verified through flight tests.

A Methodology for Integrating Security into the Automotive Development Process (자동차 개발 프로세스에서의 보안 내재화 방법론)

  • Jeong, Seungyeon;Kang, Sooyoung;Kim, Seungjoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.12
    • /
    • pp.387-402
    • /
    • 2020
  • Conventional automotive development has mainly focused on ensuring correctness and safety and security has been relatively neglected. However, as the number of automotive hacking cases has increased due to the increased Internet connectivity of automobiles, international organizations such as the United Nations Economic Commission for Europe(UNECE) are preparing cybersecurity regulations to ensure security for automotive development. As with other IT products, automotive cybersecurity regulation also emphasize the concept of "Security by Design", which considers security from the beginning of development. In particular, since automotive development has a long lifecycle and complex supply chain, it is very difficult to change the architecture after development, and thus Security by Design is much more important than existing IT products. The problem, however, is that no specific methodology for Security by Design has been proposed on automotive development process. This paper, therefore, proposes a specific methodology for Security by Design on Automotive development. Through this methodology, automotive manufacturers can simultaneously consider aspects of functional safety, and security in automotive development process, and will also be able to respond to the upcoming certification of UNECE automotive cybersecurity regulations.

The Analysis of Robot Education Unit in the Practical Arts Textbooks According to 2015 Revised Curriculum (2015 개정 실과교과서의 로봇교육 체제 분석)

  • Park, SunJu
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.1
    • /
    • pp.99-106
    • /
    • 2020
  • In this paper, we analyzed the units related to robot education in the Practical Arts textbooks according to the 2015 revised curriculum. As a result, all textbooks had a common system of introduction, development, and organization, and all of them showed a similar flow. Learning objectives were presented in all textbooks, but no affective goals were presented except cognitive and functional goals. The contents of robot learning suggest the meaning and type of robots, the structure and sensors of robots, and the activities of making robots, but the contents of robot ethics, the production and activities of various robot works, and the use of robots in the problem solving process are not presented. The assembly robot and the infrared sensor are used in common, and it consists of presenting robot production and control training materials in experience activities and arranging units through evaluation, and the A, C, and F textbooks also provide the unit auxiliary data. In the future, it will be necessary to include the contents of robot ethics education centered on the design/manufacturer and user-oriented robot ethics such as the recognition of the limits of robots, the principles of using robots correctly, safety education, personal information and privacy protection.

Braking performance of working rail-mounted cranes under wind load

  • Jin, Hui;Chen, Da
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Rail-mounted cranes can be easily damaged by a sudden gust of wind while working at a running speed, due to the large mass and high barycenter positions. In current designs, working rail-mounted cranes mainly depend on wheel braking torques to resist large wind load. Regular brakes, however, cannot satisfactorily stop the crane, which induces safety issues of cranes and hence leads to frequent crane accidents, especially in sudden gusts of wind. Therefore, it is necessary and important to study the braking performance of working rail mounted cranes under wind load. In this study, a simplified mechanical model was built to simulate the working rail mounted gantry crane, and dynamic analysis of the model was carried out to deduce braking performance equations that reflect the qualitative relations among braking time, braking distance, wind load, and braking torque. It was shown that, under constant braking torque, there existed inflection points on the curves of braking time and distance versus windforce. Both the braking time and the distance increased sharply when wind load exceeded the inflection point value, referred to as the threshold windforce. The braking performance of a 300 ton shipbuilding gantry crane was modeled and analyzed using multibody dynamics software ADAMS. The simulation results were fitted by quadratic curves to show the changes of braking time and distance versus windforce under various mount of braking torques. The threshold windforce could be obtained theoretically by taking derivative of fitted curves. Based on the fitted functional relationship between threshold windforce and braking torque, theoretical basis are provided to ensure a safe and rational design for crane wind-resistant braking systems.