• Title/Summary/Keyword: software distribution

Search Result 1,730, Processing Time 0.027 seconds

Biometry of width between labial transitional line angles in anterior teeth: an observational study

  • Wen, Chao;Ye, Hongqiang;Chen, Hu;Zhou, Yongsheng;Huang, Mingming;Sun, Yuchun
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • PURPOSE. The maximum width between the mesial and distal labial transitional line angles, described as "esthetic width" herein, could significantly influence the visual perception of the teeth and smile. This study aimed to conduct biometric research on esthetic width and to explore whether regular distribution exists in the esthetic width of human teeth. MATERIALS AND METHODS. A total of 4,264 maxillary and mandibular anterior teeth were measured using the Geomagic studio software program. The proportions of maxillary to mandibular homonymous teeth and proportions between the adjacent teeth were calculated. Bilateral symmetry and the correlation between the esthetic and mesiodistal widths were both accounted for during the measurement procedures. RESULTS. The mean esthetic widths were 6.773 ± 0.518 mm and 4.329 ± 0.331 mm for maxillary and mandibular central incisors, respectively, 5.451 ± 0.487 mm and 5.008 ± 0.351 mm for maxillary and mandibular lateral incisors, respectively, and 3.340 ± 0.353 mm and 5.958 ± 0.415 mm for maxillary and mandibular canines, respectively. Except for the mandibular canines, no significant difference in esthetic width was found among homonymous teeth from the same jaw. A high linear correlation was found between the esthetic and mesiodistal widths of the same tooth, except for the maxillary canines. Esthetic width proportions among different tooth categories showed some regular patterns, which were similar to those of the mesiodistal width. CONCLUSION. Esthetic width is regularly distributed among the teeth in the Chinese population. This could provide an important reference for anterior dental restorations and dimension recovery in esthetic reconstruction of anterior teeth.

A Study on the 3D Precise Modeling of Old Structures Using Merged Point Cloud from Drone Images and LiDAR Scanning Data (드론 화상 및 LiDAR 스캐닝의 정합처리 자료를 활용한 노후 구조물 3차원 정밀 모델링에 관한 연구)

  • Chan-hwi, Shin;Gyeong-jo, Min;Gyeong-Gyu, Kim;PuReun, Jeon;Hoon, Park;Sang-Ho, Cho
    • Explosives and Blasting
    • /
    • v.40 no.4
    • /
    • pp.15-26
    • /
    • 2022
  • With the recent increase in old and dangerous buildings, the demand for technology in the field of structure demolition is rapidly increasing. In particular, in the case of structures with severe deformation of damage, there is a risk of deterioration in stability and disaster due to changes in the load distribution characteristics in the structure, so rapid structure demolition technology that can be efficiently dismantled in a short period of time is drawing attention. However, structural deformation such as unauthorized extension or illegal remodeling occurs frequently in many old structures, which is not reflected in structural information such as building drawings, and acts as an obstacle in the demolition design process. In this study, as an effective way to overcome the discrepancy between the structural information of old structures and the actual structure, access to actual structures through 3D modeling was considered. 3D point cloud data inside and outside the building were obtained through LiDAR and drone photography for buildings scheduled to be blasting demolition, and precision matching between the two spatial data groups was performed using an open-source based spatial information construction system. The 3D structure model was completed by importing point cloud data matched with 3D modeling software to create structural drawings for each layer and forming each member along the structure slab, pillar, beam, and ceiling boundary. In addition, the modeling technique proposed in this study was verified by comparing it with the actual measurement value for selected structure member.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

Empirical and Numerical Analyses of a Small Planing Ship Resistance using Longitudinal Center of Gravity Variations (경험식과 수치해석을 이용한 종방향 무게중심 변화에 따른 소형선박의 저항성능 변화에 관한 연구)

  • Michael;Jun-Taek Lim;Nam-Kyun Im;Kwang-Cheol Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.971-979
    • /
    • 2023
  • Small ships (<499 GT) constitute 46% of the existing ships, therefore, it can be concluded that they produce relatively high CO2 gas emissions. Operating in optimal trim conditions can reduce the resistance of the ship, which results in fewer greenhouse gases. An affordable way for trim optimization is to adjust the weight distribution to obtain an optimum longitudinal center of gravity (LCG). Therefore, in this study, the effect of LCG changes on the resistance of a small planing ship is studied using empirical and numerical analyses. The Savitsky method employing Maxsurf resistance and the STAR-CCM+ commercial computational fluid dynamics (CFD) software is used for the empirical and numerical analyses, respectively. Finally, the total resistance from the ship design process is compared to obtain the optimum LCG. To summarize, using numerical analysis, optimum LCG is achieved at the 46.2% length overall (LoA) at Froude Number 0.56, and 43.4% LoA at Froude Number 0.63, which provides a significant resistance reduction of 41.12 - 45.16% compared to the reference point at 29.2% LoA.

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.325-340
    • /
    • 2024
  • There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.

Establishment of Local Diagnostic Reference Levels of Pediatric Abdominopelvic and Chest CT Examinations Based on the Body Weight and Size in Korea

  • Jae-Yeon Hwang;Young Hun Choi;Hee Mang Yoon;Young Jin Ryu;Hyun Joo Shin;Hyun Gi Kim;So Mi Lee;Sun Kyung You;Ji Eun Park
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1172-1184
    • /
    • 2021
  • Objective: The purposes of this study were to analyze the radiation doses for pediatric abdominopelvic and chest CT examinations from university hospitals in Korea and to establish the local diagnostic reference levels (DRLs) based on the body weight and size. Materials and Methods: At seven university hospitals in Korea, 2494 CT examinations of patients aged 15 years or younger (1625 abdominopelvic and 869 chest CT examinations) between January and December 2017 were analyzed in this study. CT scans were transferred to commercial automated dose management software for the analysis after being de-identified. DRLs were calculated after grouping the patients according to the body weight and effective diameter. DRLs were set at the 75th percentile of the distribution of each institution's typical values. Results: For body weights of 5, 15, 30, 50, and 80 kg, DRLs (volume CT dose index [CTDIvol]) were 1.4, 2.2, 2.7, 4.0, and 4.7 mGy, respectively, for abdominopelvic CT and 1.2, 1.5, 2.3, 3.7, and 5.8 mGy, respectively, for chest CT. For effective diameters of < 13 cm, 14-16 cm, 17-20 cm, 21-24 cm, and > 24 cm, DRLs (size-specific dose estimates [SSDE]) were 4.1, 5.0, 5.7, 7.1, and 7.2 mGy, respectively, for abdominopelvic CT and 2.8, 4.6, 4.3, 5.3, and 7.5 mGy, respectively, for chest CT. SSDE was greater than CTDIvol in all age groups. Overall, the local DRL was lower than DRLs in previously conducted dose surveys and other countries. Conclusion: Our study set local DRLs in pediatric abdominopelvic and chest CT examinations for the body weight and size. Further research involving more facilities and CT examinations is required to develop national DRLs and update the current DRLs.

The Influence of IoT Technological Characteristics on Expected Achievement and Adoption Intention of SCM: On the Perspectives of Chinese Physical Supply Chain and Distribution Industry (사물인터넷(IoT) 기술특성이 SCM 기대성과 및 도입의도에 미치는 영향에 관한 연구: 중국 물류공급망 및 유통업체를 대상으로)

  • Shang Meng;Yong Ho Shin;Chul Woo Lee;Jun Ho Mun
    • Information Systems Review
    • /
    • v.19 no.3
    • /
    • pp.1-21
    • /
    • 2017
  • The Internet of Things (IoT) analysis aims to verify the technical characteristics, performance expectations, and adoption intentions of IoT. This work refers to IoT data from foreign and domestic publications and websites as well as aims to benefit related organizations by referring to reports from agencies. The literature review summarizes the relevant theories and background of the unified theory of acceptance and use of technology. The SPSS 22.0 software and structural equation models (smart PLS 2.0) are used in the data analysis. Technical statistics analysis, reliability analysis, validity analysis, structural equation models, and statistical methods are employed to test the research hypotheses, that is, the technical characteristics of IoT will have positive effects on its performance expectations. This study introduces the characteristics and expected performance of IoT to present relevant IoT guidelines for companies that aim to adopt such technology.

Current Status and Perspective of Smart Vegetable Seedling Production Technology in the Republic of Korea (국내 스마트 채소 육묘 기술 개발 현황 및 전망)

  • Dong Hyeon Kang;So Young Lee;Hey Kyung Kim;Sewoong An
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.26 no.1
    • /
    • pp.22-29
    • /
    • 2024
  • In this study, we summarized the definition of smart vegetable seedling production technology, analysis of smart seedling production system, a hardware and software configuration model for smart seedling production system, research and development trends in smart seedling production system, and proposed future research and development plans for smart seedling production technology. Smart vegetable seedling production is a data-based seedling production, management, and distribution system that utilizes 4th Industrial Revolution technology to improve seedling productivity and quality. The production of vegetable seedlings using smart seedling production technology can be efficiently managed by collecting, analyzing, and managing information on seedlings, environment, and tasks at each stage of production by linking with the smart seedling integrated management system. However, there is still a lack of standardization of seedling standards and quality for each vegetable crop to establish smart seeding production technology, as well as development of smart seedling production element technology, which requires national wide R&D support.

The effect of infill walls on the fundamental period of steel frames by considering soil-structure interaction

  • Kianoosh Kiani;Sayed Mohammad Motovali Emami
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.417-431
    • /
    • 2024
  • The fundamental period of vibration is one of the most critical parameters in the analysis and design of structures, as it depends on the distribution of stiffness and mass within the structure. Therefore, building codes propose empirical equations based on the observed periods of actual buildings during seismic events and ambient vibration tests. However, despite the fact that infill walls increase the stiffness and mass of the structure, causing significant changes in the fundamental period, most of these equations do not account for the presence of infills walls in the structure. Typically, these equations are dependent on both the structural system type and building height. The different values between the empirical and analytical periods are due to the elimination of non-structural effects in the analytical methods. Therefore, the presence of non-structural elements, such as infill panels, should be carefully considered. Another critical factor influencing the fundamental period is the effect of Soil-Structure Interaction (SSI). Most seismic building design codes generally consider SSI to be beneficial to the structural system under seismic loading, as it increases the fundamental period and leads to higher damping of the system. Recent case studies and postseismic observations suggest that SSI can have detrimental effects, and neglecting its impact could lead to unsafe design, especially for structures located on soft soil. The current research focuses on investigating the effect of infill panels on the fundamental period of moment-resisting and eccentrically braced steel frames while considering the influence of soil-structure interaction. To achieve this, the effects of building height, infill wall stiffness, infill openings and soil structure interactions were studied using 3, 6, 9, 12, 15 and 18-story 3-D frames. These frames were modeled and analyzed using SeismoStruct software. The calculated values of the fundamental period were then compared with those obtained from the proposed equation in the seismic code. The results indicate that changing the number of stories and the soil type significantly affects the fundamental period of structures. Moreover, as the percentage of infill openings increases, the fundamental period of the structure increases almost linearly. Additionally, soil-structure interaction strongly affects the fundamental periods of structures, especially for more flexible soils. This effect is more pronounced when the infill wall stiffness is higher. In conclusion, new equations are proposed for predicting the fundamental periods of Moment Resisting Frame (MRF) and Eccentrically Braced Frame (EBF) buildings. These equations are functions of various parameters, including building height, modulus of elasticity, infill wall thickness, infill wall percentage, and soil types.

Uncertainty Calculation Algorithm for the Estimation of the Radiochronometry of Nuclear Material (핵물질 연대측정을 위한 불확도 추정 알고리즘 연구)

  • JaeChan Park;TaeHoon Jeon;JungHo Song;MinSu Ju;JinYoung Chung;KiNam Kwon;WooChul Choi;JaeHak Cheong
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.345-357
    • /
    • 2023
  • Nuclear forensics has been understood as a mendatory component in the international society for nuclear material control and non-proliferation verification. Radiochronometry of nuclear activities for nuclear forensics are decay series characteristics of nuclear materials and the Bateman equation to estimate when nuclear materials were purified and produced. Radiochronometry values have uncertainty of measurement due to the uncertainty factors in the estimation process. These uncertainties should be calculated using appropriate evaluation methods that are representative of the accuracy and reliability. The IAEA, US, and EU have been researched on radiochronometry and uncertainty of measurement, although the uncertainty calculation method using the Bateman equation is limited by the underestimation of the decay constant and the impossibility of estimating the age of more than one generation, so it is necessary to conduct uncertainty calculation research using computer simulation such as Monte Carlo method. This highlights the need for research using computational simulations, such as the Monte Carlo method, to overcome these limitations. In this study, we have analyzed mathematical models and the LHS (Latin Hypercube Sampling) methods to enhance the reliability of radiochronometry which is to develop an uncertainty algorithm for nuclear material radiochronometry using Bateman Equation. We analyzed the LHS method, which can obtain effective statistical results with a small number of samples, and applied it to algorithms that are Monte Carlo methods for uncertainty calculation by computer simulation. This was implemented through the MATLAB computational software. The uncertainty calculation model using mathematical models demonstrated characteristics based on the relationship between sensitivity coefficients and radiative equilibrium. Computational simulation random sampling showed characteristics dependent on random sampling methods, sampling iteration counts, and the probability distribution of uncertainty factors. For validation, we compared models from various international organizations, mathematical models, and the Monte Carlo method. The developed algorithm was found to perform calculations at an equivalent level of accuracy compared to overseas institutions and mathematical model-based methods. To enhance usability, future research and comparisons·validations need to incorporate more complex decay chains and non-homogeneous conditions. The results of this study can serve as foundational technology in the nuclear forensics field, providing tools for the identification of signature nuclides and aiding in the research, development, comparison, and validation of related technologies.