Software defect severity is very important in projects with limited historical data or new projects. But general software defect prediction is very difficult to collect the label information of the training set and cross-project defect prediction must have a lot of data. In this paper, an unclassified data set with defect severity is clustered according to the distribution ratio. And defect severity-based prediction model is proposed by way of labeling. Proposed model is applied CLAMI in JM1, PC4 with the least ambiguity of defect severity-based NASA dataset. And it is evaluated the value of ACC compared to original data. In this study experiment result, proposed model is improved JM1 0.15 (15%), PC4 0.12(12%) than existing defect severity-based prediction models.
모든 소프트웨어 결함들이 시스템에 같은 정도의 영향을 미치는 것이 아니므로 결함이 미치는 충격의 정도를 나타내는 결함 심각도는 소프트웨어 품질 관련 작업들에 중요한 역할을 하고 있다. 결함 심각도 관련 기존 연구들은 심각도 레벨은 정의하였지만 품질 작업의 기본 단위인 모듈의 심각도에 관한 언급은 거의 없었다. 본 논문에서는 심각도 레벨이 증가함에 따라 심각도 값이 급격히 증가하는 심각도 성질을 이용하여 결함 심각도 메트릭을 지수 함수 형태로 정의한 후, 모듈 내부의 결함 수와 결함 심각도 메트릭에 기반한 새로운 모듈 심각도 메트릭 집합을 정의하였다. 제안 메트릭들의 적용가능성을 보이기 위해 Weyuker 기준들을 이용한 분석적 검증과 NASA 공개 데이터 집합을 이용한 실험적 검증을 수행하였으며, 제안 메트릭들 중 ms는 모듈의 심각도 정량화에, msd는 심각도에 기반한 시스템간의 비교에 매우 유용하게 사용될 수 있다는 것을 보였다.
소프트웨어 결함 예측은 프로젝트의 효율적인 관리와 성공에 있어 중요한 요소이다. 이 결함은 심각도에 따라 프로젝트에 영향을 미치는 정도가 다르다. 그러나 기존 연구는 결함 유무만 관심을 두고 심각도를 고려하지 않는다. 본 논문에서는 소프트웨어 관리 효율과 품질 향상을 위해 FCM을 적용한 결함 심각도 기반 앙상블 모델을 제안한다. 제안된 모델은 FCM으로 NASA PC4의 결함심각도를 재분류한다. 그리고 RF(Random Forest)로 심각도에 영향을 주는 입력 column을 선별하여 데이터 핵심 결함 요인을 추출한다. 또한 10-fold 교차검증으로 파라미터를 변경해 모델 성능을 평가한다. 실험 결과는 다음과 같다. 첫째, 결함심각도가 58,40,80에서 30,20,128로 재분류되었다. 둘째, 심각도에 영향을 주는 중요한 입력 column은 정확도와 노드 불순도 측면에서 BRANCH_COUNT였다. 셋째, 성능평가는 트리수가 작고 고려할 변수가 많을수록 좋은 성능을 보였다.
데이터의 차원축소는 요소들의 공통성을 파악해 영향력 있는 중요한 특징 요소를 추출하여 간소화함으로써 복잡함을 줄이고 다중 공선성 문제를 해결한다. 그리고 중복 및 노이즈 검출을 함으로써 불필요함을 줄인다. 이에 본 논문에서는 PCA(Prinicipal Component Analysis)을 적용한 결함 심각도 기반 차원 축소 모델을 제안한다. 제안된 모델은 결함 심각도가 있는 NASA 데이터 세트인 PC4에 적용하여 결함 심각도에 영향을 주는 속성의 차원수를 검증한다. 그 다음 데이터의 차원을 축소한 후 비교 분석한다. 실험결과, PC4의 적합한 차원수는 2~3개였고 그룹화를 통해 차원 축소가 가능한 것을 보였다.
소프트웨어 품질을 향상하기 위해서는 소스에 내재된 결함을 효율적, 효과적으로 제거해야 한다. 개발현장에서는 결함 심각도와 결함 제거율로 결함을 제거하고 있다. 결함을 이용하여 품질을 향상하기 위한 연구로는 결함 발생 빈도과 ISO 품질속성을 이용하여 품질을 향상하려는 연구가 있고, 프로젝트 수행 시 결함을 심각도로 관리하여 품질을 향상시키는 연구가 있었다. 하지만, 결함 자체에 집중하여 결함을 유형화하여 결함 유형 간에는 어떤 영향력이 있는지, 그 영향력으로 인하여 어느 결함 유형이 더 중요한 지에 대한 연구는 미흡한 실정이었다. 이에 본 연구에서는 표준단체, 업체, 연구자들의 소프트웨어 결함 유형을 수집, 분류하여 ANP로 모형화하였다. 또한, 구성된 ANP 모형을 이용하여 일반 응용 소프트웨어에 대하여 결함 유형별 중요도 가중치를 산정하였다. 일반 응용 소프트웨어를 개발할 때, 산정된 가중치를 적용하여 결함을 제거한다면, 좀 더 효율적이고 효과적으로 소프트웨어 품질을 향상할 수 있으리라 기대한다.
소프트웨어 결함 예측 연구들의 대부분은 입력 개체의 결함 유무를 예측하는 이진 분류 모델들에 관한 것들이다. 하지만 모든 결함들이 같은 심각도를 갖지는 않으므로 예측 모델이 입력 개체의 결함경향성을 몇 개의 심각도 범주로 분류할 수 있다면 훨씬 유용하게 사용될 수 있다. 본 논문에서는 전통적인 복잡도와 크기 메트릭들을 입력으로 하는 심각도 기반 결함 예측 모델을 제안하였다. 학습 알고리즘은 많이 사용되는 네 개의 기계학습 기법들을 사용하였으며, 모델 구조는 삼진 분류 모델로 하였다. 모델 성능 평가를 위해 실험 데이터는 두 개의 NASA 공개 데이터 집합을 사용하였고, 평가 측정치는 Accuracy를 이용하였다. 평가 실험 결과는 역전파 신경망 모델이 두 데이터 집합에 대해 각각 81%와 88% 정도의 Accuracy 값으로 가장 좋은 성능을 보였다.
In this paper, we proposed a prioritization method of test cases using a value estimation model of test sets, that are key elements for highly effective software testings as well as involve a large cost factor in software developments and maintenances. Based on previous studies, our idea includes introducing some practical factors of the test case prioritization which critically influence the value of a test case: Relative values of test sets before and after the test running, Average value of these two relative values, Severity of the defect, Risks that are covered, Frequency of use, Change related values, Systematic elicitations, etc. Finally we discussed the usefulness and the expected effects of the proposed scheme.
소프트웨어 결함 예측에 관한 기존의 연구들은 대부분 모델의 입력 모듈이 결함을 가지고 있는지 여부를 판단하는 이진 감독형 분류 모델들에 관한 것들이었다. 하지만 이진 분류 모델은 결함의 복잡한 특성들을 고려하지 않고 단순히 입력 모듈의 결함 유무만을 판단한다는 문제점이 있고, 감독형 모델은 대부분의 개발 집단이 보유하고 있지 않은 훈련 데이터 집합을 필요로 한다는 한계점이 있다. 본 논문은 이러한 두 가지 문제점을 해결하기 위해 비감독형 알고리즘을 사용한 심각도 기반 삼진 분류 모델을 제안하였으며, 평가 실험 결과 제안 모델이 감독형 모델들에 필적하는 예측 성능을 보였다.
The face and the external nose define an individual's physical appearance. Nasal deformities can cause facial disfigurement along with unwanted psychological repercussions. Nasal deformities range in severity, with the most severe cases being indications for a rhinectomy, due to the complexity of the nasal defect. According to published literature, there is no consensus among otolaryngologists and plastic surgeons on which technique or flap use is preferred in terms of complications, aesthetic outcome, or patient satisfaction. The goal of this study is to provide a comprehensive analysis of published studies on nasal reconstruction following rhinectomy. Using the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols guidelines for writing systematic reviews, a systematic review was conducted. Four databases were searched using a search strategy. These articles were then imported into the COVIDENCE software and went screening and thorough article review. After screening 2,237 articles, 23 studies were then extracted for data collection analysis. We collected data from 12 case series, 4 case studies, 1 prospective case series, and 4 retrospective chart review studies. The most commonly reported flaps were forehead flaps, superior extended nasal myocutaneous island, forearm free flaps, anterolateral thigh (ALT) free flap, medial femoral condyle free flap (n = 8), and zygomaticus implants (n = 6), and retained nasal prosthesis. Although not specifically indicated by a certain number, the most common indication for the rhinectomy was malignancy, followed by traumas, postsurgical complications, radionecrosis, and congenital nasal malformations.
입술은 각질층이 매우 얇아 수분증발에 취약하며, 노화 과정에서 주름이 증가하고, 붉은색을 잃으며, 볼륨이 감소하게 된다. 매력적인 입술을 가지기 위해 시행되는 지방이식, 필러 주입을 대체하기 위한 성분에 대한 연구는 아직 보고된 바가 거의 없으며, 최근 새로운 지방세포의 수를 증가시키는 것이 인체 내 지방을 늘릴 수 있는 방법으로 제안되고 있다. 우리는 선행연구에서 지방줄기세포를 지방세포로 분화 유도하는 천연물질로써 요엽후박나무 추출물(Magnolia officinalis bark extract)의 우수한 효능을 확인하였다. 본 연구에서는 요엽후박나무 추출물이 바이오 프린팅으로 제작한 지방 유사 구조체에서 지방(lipid droplet)의 양을 증가시키면서 분화를 촉진시킴을 3D 수준에서 확인하였다. 다음으로 입술 주름에 미치는 영향을 확인하기 위해 주름 사진으로 부터 명암값의 표준편차(SDGV)를 J 이미지 소프트 웨어를 사용하여 측정함으로써 객관적 측정 방법을 확립하였고, 주름 정도에 따른 입술 주름 그레이드를 도출하여 정량화하였다. 결과적으로 요엽후 박나무 추출물 1%를 함유한 제품을 12주간 사용했을 때, 입술 주름을 유의하게 개선시킬 수 있음을 확인하였다. 본 연구 결과는 요엽후박나무 추출물이 지방줄기세포를 지방세포로 분화 유도하는 효능을 가지며, 이러한 효능이 입술 주름을 개선하는데 도움을 줄 수 있다는 점을 시사하고, 따라서 요엽후박나무 추출물은 입술 주름과 볼륨을 개선하는 화장품 후보 소재로 적용 가능하다는 것을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.