There are two important problems in improving text classification systems based on machine learning approach. The first one, called "selection problem", is how to select a minimum number of informative documents from a given document collection. The second one, called "composition problem", is how to reorganize selected training documents so that they can fit an adopted learning method. The former problem is addressed in "active learning" algorithms, and the latter is discussed in "boosting" algorithms. This paper proposes a new learning method, called AdaBUS, which proactively solves the above problems in the context of Naive Bayes classification systems. The proposed method constructs more accurate classification hypothesis by increasing the valiance in "weak" hypotheses that determine the final classification hypothesis. Consequently, the proposed algorithm yields perturbation effect makes the boosting algorithm work properly. Through the empirical experiment using the Routers-21578 document collection, we show that the AdaBUS algorithm more significantly improves the Naive Bayes-based classification system than other conventional learning methodson system than other conventional learning methods
OpenSSL is an open-source library implementing SSL that is a secure communication protocol. However, the library has a severe vulnerability that its security information can be easily exposed to malicious software when the library is used in a form of shared library on Linux and UNIX operating systems. We propose a scheme to attack the vulnerability of the OpenSSL library. The scheme injects codes into a running client program to execute the following attacks on the vulnerability in a SSL handshake. First, when a client sends a server a list of cryptographic algorithms that the client is willing to support, our scheme replaces all algorithms in the list with a specific algorithm. Such a replacement causes the server to select the specific algorithm. Second, the scheme steals a key for data encryption and decryption when the key is generated. Then the key is sent to an outside attacker. After that, the outside attacker decrypts encrypted data that has been transmitted between the client and the server, using the specified algorithm and the key. To show that our scheme is realizable, we perform an experiment of collecting encrypted login data that an ftp client using the OpenSSL shared library sends its server and then decrypting the login data.
Recently, since DNA computing has been widely studied for various applications, DNA sequence design which is the most basic and important step for DNA computing has been highlighted. In previous works, DNA sequence design has been formulated as a multi-objective optimization task, and solved by elitist non-dominated sorting genetic algorithm (NSGA-II). However, NSGA-II needed lots of computational time. Therefore, we use an $\varepsilon$- multiobjective evolutionarv algorithm ($\varepsilon$-MOEA) to overcome the drawbacks of NSGA-II in this paper. To compare the performance of two algorithms in detail, we apply both algorithms to the DTLZ2 benchmark function. $\varepsilon$-MOEA outperformed NSGA-II in both convergence and diversity, $70\%$ and $73\%$ respectively. Especially, $\varepsilon$-MOEA finds optimal solutions using small computational time. Based on these results, we redesign the DNA sequences generated by the previous DNA sequence design tools and the DNA sequences for the 7-travelling salesman problem (TSP). The experimental results show that $\varepsilon$-MOEA outperforms the most cases. Especially, for 7-TSP, $\varepsilon$-MOEA achieves the comparative results two tines faster while finding $22\%$ improved diversity and $92\%$ improved convergence in final solutions using the same time.
본 논문에서는 분산된 클록들을 주기적으로 동기화 시키는 분산 실시간 시스템에서 시간적 제약을 만족시키기 위한 정적/동적 시간 제약(timing constraint) 변환 기법을 제안한다. 전형적인 이산클록동기화(discrete clock synchronization) 알고리즘은 클록의 값을 순간적으로 조정하여 클록의 시간이 불연속적으로 진행한다. 이러한 시간상의 불연속성은 시간적 이벤트를 잃어버리거나 다시 발생시키는 오류를 범하게 한다.클록 시간의 불연속성을 피하기 위해 일반적으로 연속클록동기화(continuous clock synchronization) 기법이 제안되고 있지만 소프트웨어적으로 구현되면 많은 오버헤드를 유발시키는 문제점이 있다. 본 논문에서는 시간적 제약을 동적으로 변환시키는 DCT (Dynamic Constraint Transformation) 기법을 제안하였으며, 이를 통해 기존의 이산클록동기화 알고리즘을 수정하지 않고서도 클록 시간의 불연속성에 의한 문제점들을 해결할 수 있도록 하였다. 아울러 DCT에 의해 이산클록동기화 하에서 생성된 태스크 스케쥴이 연속클록동기화에 의해 생성된 스케쥴과 동일함을 증명하여 DCT의 동작이 이론적으로 정확함을 증명하였다.또한 분산 실시간 시스템에서 지역 클록(local clock)이 기준 클록과 완벽하게 일치하지 않아서 발생하는 스케쥴링상의 문제점을 다루었다. 이를 위해 먼저 두 가지의 스케쥴링 가능성, 지역적 스케쥴링 가능성(local schedulability)과 전역적 스케쥴링 가능성(global schedulability)을 정의하고, 이를 위해 시간적 제약을 정적으로 변환시키는 SCT (Static Constraint Transformation) 기법을 제안하였다. SCT를 통해 지역적으로 스케쥴링 가능한 태스크는 전역적으로 스케쥴링이 가능하므로, 단지 지역적 스케쥴링 가능성만을 검사하면 스케쥴링 문제를 해결할 수 있도록 하였고 이를 수학적으로 증명하였다.Abstract In this paper, we present static and dynamic constraint transformation techniques for ensuring timing requirements in a distributed real-time system possessing periodically synchronized distributed local clocks. Traditional discrete clock synchronization algorithms that adjust local clocks instantaneously yield time discontinuities. Such time discontinuities lead to the loss or the gain of events, thus raising serious run-time faults.While continuous clock synchronization is generally suggested to avoid the time discontinuity problem, it incurs too much run-time overhead to be implemented in software. We propose a dynamic constraint transformation (DCT) technique which can solve the problem without modifying discrete clock synchronization algorithms. We formally prove the correctness of the DCT by showing that the DCT with discrete clock synchronization generates the same task schedule as the continuous clock synchronization.We also investigate schedulability problems that arise when imperfect local clocks are used in distributed real-time systems. We first define two notions of schedulability, global schedulability and local schedulability, and then present a static constraint transformation (SCT) technique. The SCT ensures that it is sufficient to check the schedulability of a task locally in a node with a local clock, since the global schedulability of the task is derived from its local schedulability through SCT. We formally prove the correctness of SCT.
Purpose - The ICT market in the EU is lagging behind that of the US; however, algorithm and software development within the EU have grown steadily, and they involve focusing on the creative cultural convergence conceptualized as part of Horizon 2020 and connecting neighboring markets in the EE and the Mediterranean region. It is essential to study the requirements to market the EU's creative ICT development in emerging industrial countries after examining its applicability in these countries. Research design, data, and methodology - This study deals with data pertaining to the EU's creative industry and competitive edge. The global cultural expansion of the EU facilitates a new concept involving not only low-cost IT products to enhance local cultural artifacts through R&D and the construction of efficient infrastructure services, but also information exchange with a realistic commercialization of the technology that can be applied for creative cultural localization. In the European industry, research on algorithms has been applied for the benefit of consumers. We investigated how the process is conducted in the EU. Results - Europe needs to adjust its economic structure to the local culture as part of IT distribution convergence. The convergence has been converted into a production algorithm with IT in the form of low-cost production. This is because there is an attempt to improve the quality of transport infrastructure, workforce availability, and the distribution of the distance to the local industries and consumers, using IT algorithms. Integrated into the manufacturing industry, based on the ICT infrastructure and solutions, smart localized regional clusters are formed with the help of grafting. Europe has own strategy to increase the number of hub-and-spoke cities. Europe is now becoming integrated, with an EPC system for regional cooperation rather than national competition in ICT technology. Europe has also been recognized in this study as changing the step-by-step paradigm for global competitiveness through new creative culture industries. Conclusions - As a result, there are several ways of converging with others through EU R&D intensity; therefore, the EU can be seen as successfully increasing marginal value, which is useful in developing a special industrial cluster or local cultural cities that create converged development by connecting people and objects with IT. In fact, when compared to the US, Europe has a strong culture and the car industries have a tendency to overshadow the IT industries with integration of services in IT distribution. Considering the rapid environmental changes, the convergence of IT services is likely to take place in Europe, similar to the pharmaceutical industry and the automotive industry. This requires a focus on human resources and automated systems management. The trend is to move away from low-wage industries, switched to key personnel centers of the local university-industry. EU emphasizes the creation of IT market demand in Europe involving local cultural convergence for marketing as the second step to strengthen the economic hub-and-spoke areas.
Park, Hye-Yeong;Lee, Gwan-Yong;Lee, Il-Byeong;Byeon, Hye-Ran
Journal of KIISE:Software and Applications
/
v.26
no.11
/
pp.1261-1269
/
1999
다층 퍼셉트론은 다양한 응용 분야에 성공적으로 적용되고 있는 대표적인 신경회로망 모델이다. 그러나 다층 퍼셉트론의 학습에서 나타나는 플라토에 기인한 느린 학습 속도와 지역 극소는 실제 응용문제에 적용함에 있어서 가장 큰 문제로 지적되어왔다. 이 문제를 해결하기 위해 여러 가지 다양한 학습알고리즘들이 개발되어 왔으나, 계산의 비효율성으로 인해 실제 문제에는 적용하기 힘든 예가 많은 등, 현재까지 만족할 만한 해결책은 제시되지 못하고 있다. 본 논문에서는 다층퍼셉트론의 베이시스 함수로 사용되는 시그모이드 함수를 보다 일반화된 형태로 정의하여 사용함으로써 학습에 있어서의 플라토를 완화하고, 지역극소에 빠지는 것을 줄이는 접근방법을 소개한다. 본 방법은 기존의 변형된 가중치 수정식을 사용한 학습 속도 향상의 방법들과는 다른 접근 방법을 택함으로써 기존의 방법들과 함께 사용하는 것이 가능하다는 특징을 갖고 있다. 제안하는 방법의 성능을 확인하기 위하여 간단한 패턴 인식 문제들에의 적용 실험 및 기존의 학습 속도 향상 방법을 함께 사용하여 시계열 예측 문제에 적용한 실험을 수행하였고, 그 결과로부터 제안안 방법의 효율성을 확인할 수 있었다. Abstract A multilayer perceptron is the most well-known neural network model which has been successfully applied to various fields of application. Its slow learning caused by plateau and local minima of gradient descent learning, however, have been pointed as the biggest problems in its practical use. To solve such a problem, a number of researches on learning algorithms have been conducted, but it can be said that none of satisfying solutions have been presented so far because the problems such as computational inefficiency have still been existed in these algorithms. In this paper, we propose a new learning approach to minimize the effect of plateau and reduce the possibility of getting trapped in local minima by generalizing the sigmoidal function which is used as the basis function of a multilayer perceptron. Adapting a new approach that differs from the conventional methods with revised updating equation, the proposed method can be used together with the existing methods to improve the learning performance. We conducted some experiments to test the proposed method on simple problems of pattern recognition and a problem of time series prediction, compared our results with the results of the existing methods, and confirmed that the proposed method is efficient enough to apply to the real problems.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.6
/
pp.86-94
/
2019
This paper describes the development of unmanned vehicle remote control system which is configured with steering and accelerating/braking hardware to improve the sense of reality and safety of control. Generally, in these case of the remote control system, a joystick-type device is used for steering and accelerating/braking control of unmanned vehicle in most cases. Other systems have been developing using simple steering wheel, but there is no function of that feedback the feeling of driving situation to users and it mostly doesn't include the accelerating/braking control hardware. The technology of feedback means that a reproducing the feeling of current driving situation through steering and accelerating/braking hardware when driving a vehicle in person. In addition to studying feedback technologies that reduce unfamiliarity in remote control of unmanned vehicles, it is necessary to develop the remote control system with hardware that can improve sense of reality. Therefore, in this study, the reliable remote control system is developed and required system specification is defined for applying force-feedback haptic control technology developed through previous research. The system consists of a steering-wheel module similar to a normal vehicle and an accelerating/braking pedal module with actuators to operate by feedback commands. In addition, the software environment configured by CAN communication to send feedback commands to each modules. To verify the reliability of the remote control system, the force-feedback haptic control algorithms developed through previous research were applied, to assess the behavior of the algorithms in each situation.
KIPS Transactions on Software and Data Engineering
/
v.12
no.2
/
pp.59-76
/
2023
Since the COVID-19 era, the rise in apartment prices has been unconventional. In this uncertain real estate market, price prediction research is very important. In this paper, a model is created to predict the actual transaction price of future apartments after building a vast data set of 870,000 from 2015 to 2020 through data collection and crawling on various real estate sites and collecting as many variables as possible. This study first solved the multicollinearity problem by removing and combining variables. After that, a total of five variable selection algorithms were used to extract meaningful independent variables, such as Forward Selection, Backward Elimination, Stepwise Selection, L1 Regulation, and Principal Component Analysis(PCA). In addition, a total of four machine learning and deep learning algorithms were used for deep neural network(DNN), XGBoost, CatBoost, and Linear Regression to learn the model after hyperparameter optimization and compare predictive power between models. In the additional experiment, the experiment was conducted while changing the number of nodes and layers of the DNN to find the most appropriate number of nodes and layers. In conclusion, as a model with the best performance, the actual transaction price of apartments in 2021 was predicted and compared with the actual data in 2021. Through this, I am confident that machine learning and deep learning will help investors make the right decisions when purchasing homes in various economic situations.
Researchers have developed various algorithms utilizing artificial intelligence (AI) to automatically and objectively diagnose patterns and extent of pulmonary emphysema or interstitial lung diseases on chest CT scans. Studies show that AI-based quantification of emphysema on chest CT scans reveals a connection between an increase in the relative percentage of emphysema and a decline in lung function. Notably, quantifying centrilobular emphysema has proven helpful in predicting clinical symptoms or mortality rates of chronic obstructive pulmonary disease. In the context of interstitial lung diseases, AI can classify the usual interstitial pneumonia pattern on CT scans into categories like normal, ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation. This classification accuracy is comparable to chest radiologists (70%-80%). However, the results generated by AI are influenced by factors such as scan parameters, reconstruction algorithms, radiation doses, and the training data used to develop the AI. These limitations currently restrict the widespread adoption of AI for quantifying pulmonary emphysema and interstitial lung diseases in daily clinical practice. This paper will showcase the authors' experience using AI for diagnosing and quantifying emphysema and interstitial lung diseases through case studies. We will primarily focus on the advantages and limitations of AI for these two diseases.
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1062-1062
/
2001
The concept of “precision agriculture” or “site-specific farming” is usually confined to the fields of soil science, crop science and agronomy. However, because plants grow in soil, animals eat plants, and humans eat animal products, it could be argued (perhaps with some poetic licence) that the fields of feed quality, animal nutrition and animal production should also be considered in this context. NIR spectroscopy has proved over the last 20 years that it can provide a firm foundation for quality measurement across all of these fields, and with the continuing developments in instrumentation, computer capacity and software, is now a major cog in the wheel of precision agriculture. There have been a few giant leaps and a lot of small steps in the impact of NIR on the animal world. These have not been confined to the amazing advances in hardware and software, although would not have occurred without them. Rapid testing of forages, grains and mixed feeds by NIR for nutritional value to livestock is now commonplace in commercial laboratories world-wide. This would never have been possible without the pioneering work done by the USDA NIR Forage Research Network in the 1980's, following the landmark paper of Norris et al. in 1976. The advent of calibration transfer between instruments, algorithms which utilize huge databases for calibration and prediction, and the ability to directly scan whole grains and fresh forages can also be considered as major steps, if not leaps. More adventurous NIR applications have emerged in animal nutrition, with emphasis on estimating the functional properties of feeds, such as in vivo digestibility, voluntary intake, protein degradability and in vitro assays to simulate starch digestion. The potential to monitor the diets of grazing animals by using faecal NIR spectra is also now being realized. NIR measurements on animal carcasses and even live animals have also been attempted, with varying degrees of success, The use of discriminant analysis in these fields is proving a useful tool. The latest giant leap is likely to be the advent of relatively low-cost, portable and ultra-fast diode array NIR instruments, which can be used “on-site” and also be fitted to forage or grain harvesters. The fodder and livestock industries are no longer satisfied with what we once thought was revolutionary: a 2-3 day laboratory turnaround for fred quality testing. This means that the instrument needs to be taken to the samples rather than vice versa. Considerable research is underway in this area, but the challenge of calibration transfer and maintenance of instrument networks of this type remains. The animal world is currently facing its biggest challenges ever; animal welfare, alleged effects of animal products on human health, environmental and economic issues are difficult enough, but the current calamities of BSE and foot and mouth disease are “the last straw” NIR will not of course solve all these problems, but is already proving useful in some of these areas and will continue to do so.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.