• Title/Summary/Keyword: software algorithms

Search Result 1,093, Processing Time 0.029 seconds

A Slice Information Based Labeling Algorithm for 3-D Volume Data (Slice 정보에 기반한 3차원 볼륨 데이터의 레이블링 알고리즘)

  • 최익환;최현주;이병일;최흥국
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.922-928
    • /
    • 2004
  • We propose a new 3 dimensional labeling method based on slice information for the volume data. This method is named SIL (Slice Information based Labeling). Compare to the conventional algorithms, it has advantages that the use of memory is efficient and it Is possible to combine with a variety of 2 dimensional labeling algorithms for finding an appropriate labeling algorithm to its application. In this study, we applied SIL to confocal microscopy images of cervix cancer cell and compared the results of labeling. According to the measurement, we found that the speed of Sd combined with, CCCL (Contour based Connected Component Labeling) is almost 2 times higher than that of other methods. In conclusion, considering that the performance of labeling depends on a kind of image, we obtained that the proposed method provide better result for the confocal microscopy cell volume data.

A Genetic Algorithm for a Large-Scaled Maximal Covering Problem (대규모 Maximal Covering 문제 해결을 위한 유전 알고리즘)

  • 박태진;황준하;류광렬
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.570-576
    • /
    • 2004
  • It is very difficult to efficiently solve a large-scaled maximal covering problem(MCP) by a genetic algorithm. In this paper, we present new crossover and mutation operators specially designed for genetic algorithms to solve large-scaled MCPs efficiently. We also introduce a novel genetic algorithm employing unexpressed genes. Unexpressed genes are the genes which are not expressed and thus do not affect the evaluation of the individuals. These genes play the role of reserving information susceptible to be lost by the application of genetic operations but is suspected to be potentially useful in later generations. The genetic algorithm employing unexpressed genes enjoys the advantage of being able to maintain diversity of the population and thus can search more efficiently to solve large-scaled MCPs. Experiments with large-scaled real MCP data has shown that our genetic algorithm employing unexpressed genes significantly outperforms tabu search which is one of the popularly used local neighborhood search algorithms for optimization.

Asynchronous Ranging Method using Estimated Frequency Differences in Wireless Sensor Networks (무선 센서망에서의 주파수 차이 추정 비동기 Ranging 방식)

  • Nam, Yoon-Seok;Huh, Jae-Doo
    • The KIPS Transactions:PartC
    • /
    • v.15C no.1
    • /
    • pp.31-36
    • /
    • 2008
  • The clock frequency difference of sensor nodes is one of main parameters in TOF estimation and affect to degrade ranging algorithms to estimate positions of mobile nodes in wireless sensor networks. The specification of IEEE802.15.4a describes asynchronous TWR and SDS-TWR insensitive to frequency difference without any additional network synchronization. But the TWR and SDS-TWR can not eliminate sufficiently the effect of frequency difference of node pair, packet processing delay and its difference. Especially use of low cost oscillator with wide range offset, sensor node with different hardware and software can make the positioning errors worse. We propose an estimation method of frequency differences, and apply the measured frequency differences to TWR and SDS-TWR. We evaluate the performance of the proposed algorithm with simulation, and make certain that the proposed method enhances the performance of existing algorithms with positioning errors less than 25 cm.

Pattern Classification of Multi-Spectral Satellite Images based on Fusion of Fuzzy Algorithms (퍼지 알고리즘의 융합에 의한 다중분광 영상의 패턴분류)

  • Jeon, Young-Joon;Kim, Jin-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.674-682
    • /
    • 2005
  • This paper proposes classification of multi-spectral satellite image based on fusion of fuzzy G-K (Gustafson-Kessel) algorithm and PCM algorithm. The suggested algorithm establishes the initial cluster centers by selecting training data from each category, and then executes the fuzzy G-K algorithm. PCM algorithm perform using classification result of the fuzzy G-K algorithm. The classification categories are allocated to the corresponding category when the results of classification by fuzzy G-K algorithm and PCM algorithm belong to the same category. If the classification result of two algorithms belongs to the different category, the pixels are allocated by Bayesian maximum likelihood algorithm. Bayesian maximum likelihood algorithm uses the data from the interior of the average intracluster distance. The information of the pixels within the average intracluster distance has a positive normal distribution. It improves classification result by giving a positive effect in Bayesian maximum likelihood algorithm. The proposed method is applied to IKONOS and Landsat TM remote sensing satellite image for the test. As a result, the overall accuracy showed a better outcome than individual Fuzzy G-K algorithm and PCM algorithm or the conventional maximum likelihood classification algorithm.

A Study on Machine Learning Algorithm Suitable for Automatic Crack Detection in Wall-Climbing Robot (벽면 이동로봇의 자동 균열검출에 적합한 기계학습 알고리즘에 관한 연구)

  • Park, Jae-Min;Kim, Hyun-Seop;Shin, Dong-Ho;Park, Myeong-Suk;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.449-456
    • /
    • 2019
  • This paper is a study on the construction of a wall-climbing mobile robot using vacuum suction and wheel-type movement, and a comparison of the performance of an automatic wall crack detection algorithm based on machine learning that is suitable for such an embedded environment. In the embedded system environment, we compared performance by applying recently developed learning methods such as YOLO for object learning, and compared performance with existing edge detection algorithms. Finally, in this study, we selected the optimal machine learning method suitable for the embedded environment and good for extracting the crack features, and compared performance with the existing methods and presented its superiority. In addition, intelligent problem - solving function that transmits the image and location information of the detected crack to the manager device is constructed.

Performance Comparison of Machine Learning Algorithms for TAB Digit Recognition (타브 숫자 인식을 위한 기계 학습 알고리즘의 성능 비교)

  • Heo, Jaehyeok;Lee, Hyunjung;Hwang, Doosung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • In this paper, the classification performance of learning algorithms is compared for TAB digit recognition. The TAB digits that are segmented from TAB musical notes contain TAB lines and musical symbols. The labeling method and non-linear filter are designed and applied to extract fret digits only. The shift operation of the 4 directions is applied to generate more data. The selected models are Bayesian classifier, support vector machine, prototype based learning, multi-layer perceptron, and convolutional neural network. The result shows that the mean accuracy of the Bayesian classifier is about 85.0% while that of the others reaches more than 99.0%. In addition, the convolutional neural network outperforms the others in terms of generalization and the step of the data preprocessing.

Missing Data Modeling based on Matrix Factorization of Implicit Feedback Dataset (암시적 피드백 데이터의 행렬 분해 기반 누락 데이터 모델링)

  • Ji, JiaQi;Chung, Yeongjee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.495-507
    • /
    • 2019
  • Data sparsity is one of the main challenges for the recommender system. The recommender system contains massive data in which only a small part is the observed data and the others are missing data. Most studies assume that missing data is randomly missing from the dataset. Therefore, they only use observed data to train recommendation model, then recommend items to users. In actual case, however, missing data do not lost randomly. In our research, treat these missing data as negative examples of users' interest. Three sample methods are seamlessly integrated into SVD++ algorithm and then propose SVD++_W, SVD++_R and SVD++_KNN algorithm. Experimental results show that proposed sample methods effectively improve the precision in Top-N recommendation over the baseline algorithms. Among the three improved algorithms, SVD++_KNN has the best performance, which shows that the KNN sample method is a more effective way to extract the negative examples of the users' interest.

Matching Performance-Based Comparative Study of Fingerprint Sample Quality Measures (매칭성능 기반의 지문샘플 품질측정방법에 관한 비교연구)

  • Jin, Chang-Long;Kim, Hak-Il;Elliott, Stephen
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.3
    • /
    • pp.11-25
    • /
    • 2009
  • Fingerprint sample quality is one of major factors influencing the matching performance of fingerprint recognition systems. The error rates of fingerprint recognition systems can be decreased significantly by removing poor quality fingerprints. The purpose of this paper is to assess the effectiveness of individual sample quality measures on the performance of minutiae-based fingerprint recognition algorithms. Initially, the authors examined the various factors that influenced the matching performance of the minutiae-based fingerprint recognition algorithms. Then, the existing measures for fingerprint sample quality were studied and the more effective quality measures were selected and compared with two image quality software packages, (NFIQ from NIST, and QualityCheck from Aware Inc.) in terms of matching performance of a commercial fingerprint matcher (Verifinger 5.0 from Neurotechnologija). The experimental results over various Fingerprint Verification Competition (FVC) datasets show that even a single sample quality measure can enhance the matching performance effectively.

Group Testing Scheme for Effective Diagnosis of COVID-19 (효율적인 코로나19 진단을 위한 그룹검사 체계)

  • Seong, Jin-Taek
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.445-451
    • /
    • 2021
  • Due to the recent spread and increasing damage of COVID-19, the most important measure to prevent infection is to find infected people early. Group testing which introduced half a century ago, can be used as a diagnostic method for COVID-19 and has become very efficient method. In this paper, we review the fundamental principles of existing group testing algorithms. In addition, the sparse signal reconstruction approach proposed by compressed sensing is improved and presented as a solution to group testing. Compressed sensing and group testing differ in computational methods, but are similar in that they find sparse signals. The our simulation results show the superiority of the proposed sparse signal reconstruction method. It is noteworthy that the proposed method shows performance improvement over other algorithms in the group testing schemes. It also shows performance improvement when finding a large number of defective samples.

Internet of Things-Based Command Center to Improve Emergency Response in Underground Mines

  • Jha, Ankit;Verburg, Alex;Tukkaraja, Purushotham
    • Safety and Health at Work
    • /
    • v.13 no.1
    • /
    • pp.40-50
    • /
    • 2022
  • Background: Underground mines have several hazards that could lead to serious consequences if they come into effect. Acquiring, evaluating, and using the real-time data from the atmospheric monitoring system and miner's positional information is crucial in deciding the best course of action. Methods: A graphical user interface-based software is developed that uses an AutoCAD-based mine map, real-time atmospheric monitoring system, and miners' positional information to guide on the shortest route to mine exit and other locations within the mine, including the refuge chamber. Several algorithms are implemented to enhance the visualization of the program and guide the miners through the shortest routes. The information relayed by the sensors and communicated by other personnel are collected, evaluated, and used by the program in proposing the best course of action. Results: The program was evaluated using two case studies involving rescue relating to elevated carbon monoxide levels and increased temperature simulating fire scenarios. The program proposed the shortest path from the miner's current location to the exit of the mine, nearest refuge chamber, and the phone location. The real-time sensor information relayed by all the sensors was collected in a comma-separated value file. Conclusion: This program presents an important tool that aggregates information relayed by sensors to propose the best rescue strategy. The visualization capability of the program allows the operator to observe all the information on a screen and monitor the rescue in real time. This program permits the incorporation of additional sensors and algorithms to further customize the tool.