• Title/Summary/Keyword: software algorithms

Search Result 1,093, Processing Time 0.024 seconds

An Intelligent Framework for Test Case Prioritization Using Evolutionary Algorithm

  • Dobuneh, Mojtaba Raeisi Nejad;Jawawi, Dayang N.A.
    • Journal of Internet Computing and Services
    • /
    • v.17 no.5
    • /
    • pp.89-95
    • /
    • 2016
  • In a software testing domain, test case prioritization techniques improve the performance of regression testing, and arrange test cases in such a way that maximum available faults be detected in a shorter time. User-sessions and cookies are unique features of web applications that are useful in regression testing because they have precious information about the application state before and after making changes to software code. This approach is in fact a user-session based technique. The user session will collect from the database on the server side, and test cases are released by the small change configuration of a user session data. The main challenges are the effectiveness of Average Percentage Fault Detection rate (APFD) and time constraint in the existing techniques, so in this paper developed an intelligent framework which has three new techniques use to manage and put test cases in group by applying useful criteria for test case prioritization in web application regression testing. In dynamic weighting approach the hybrid criteria which set the initial weight to each criterion determines optimal weight of combination criteria by evolutionary algorithms. The weight of each criterion is based on the effectiveness of finding faults in the application. In this research the priority is given to test cases that are performed based on most common http requests in pages, the length of http request chains, and the dependency of http requests. To verify the new technique some fault has been seeded in subject application, then applying the prioritization criteria on test cases for comparing the effectiveness of APFD rate with existing techniques.

Using Artificial Neural Network for Software Development Efforts Estimation on (인공신경망을 이용한 소프트웨어 개발공수 예측모델에 관한 연구)

  • Jeon, Eung-Seop
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.1
    • /
    • pp.211-224
    • /
    • 1996
  • In the research area of estimation of the software development efforts, a number of researches have been accomplished in order to control the costs and to make software more competitive. However, most of them were restricted to the functional algorithm models or the statistic models. Moreover, since they are dealing with the cases of foreign countries, the results are hard to apply directly to the domestic environment for the efficient project management because of lack of accuracy, fitness, flexibility and portability. Therefore, it is appropriate to suggest and propose a new approach supported by artificial neural network which is composed of back propagation and feel-forward algorithms to improve the exactness of the efforts estimation and to advance practical uses. In this study, the artificial neural network approach is used to model the software cost estimation and the results are compared with the revised COCOMO and the multiregression model in order to validate the superiority of the model.

  • PDF

Development of Graphical Solution for Computer-Assisted Fault Diagnosis: Preliminary Study (컴퓨터 원용 결함진단을 위한 그래픽 솔루션 개발에 관한 연구)

  • Yoon, Han-Bean;Yun, Seung-Man;Han, Jong-Chul;Cho, Min-Kook;Lim, Chang-Hwy;Heo, Sung-Kyn;Shon, Cheol-Soon;Kim, Seong-Sik;Lee, Seok-Hee;Lee, Suk;Kim, Ho-Koung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 2009
  • We have developed software for converting the volumetric voxel data obtained from X-ray computed tomography(CT) into computer-aided design(CAD) data. The developed software can used for non-destructive testing and evaluation, reverse engineering, and rapid prototyping, etc. The main algorithms employed in the software are image reconstruction, volume rendering, segmentation, and mesh data generation. The feasibility of the developed software is demonstrated with the CT data of human maxilla and mandible bones.

CUTIG: An Automated C Unit Test Data Generator Using Static Analysis (CUTIG: 정적 분석을 이용한 C언어 단위 테스트 데이타 추출 자동화 도구)

  • Kim, Taek-Su;Park, Bok-Nam;Lee, Chun-Woo;Kim, Ki-Moon;Seo, Yun-Ju;Wu, Chi-Su
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.1
    • /
    • pp.10-20
    • /
    • 2009
  • As unit testing should be performed repeatedly and continuously, it is a high-cost software development activity. Although there are many studies on unit test automation, there are less studies on automated test case generation which are worthy of note. In this paper, we discuss a study on automated test data generation from source codes and indicate algorithms for each stage. We also show some issues of test data generation and introduce an automated test data generating tool: CUTIG. As CUTIG generates test data not from require specifications but from source codes, software developers could generate test data when specifications are insufficient or discord with real implementation. Moreover we hope that the tool could help software developers to reduce cost for test data preparation.

TUTUM Easy-seismic: Development of a Seismic Design Automation Software for Building Fire Protection Systems (TUTUM Easy-seismic: 소방시설 내진설계 자동화 소프트웨어 개발)

  • Oh, Chang-Soo;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.140-148
    • /
    • 2019
  • In line with the "mandatory seismic design of fire protection facilities," development of design automation software is indispensable for improving the reliability and efficiency of seismic design. The seismic design automation software developed in this study is an automated S/W for seismic design of fire-fighting facilities, and functions such as automatic arrangement of anti-shake braces according to Korea National Fire Agency's Seismic Design Standards for fire-fighting facilities, output of seismic bracing calculation bills and automatic quantities counting. In addition, the seismic design automation software not only reduces the work speed by three times compared to the manual design of the designer, but also improves the reliability of the design by reducing the human error related to the design quantity such as the brace. In addition, in the seismic design method of fire protection facilities that have been approached conservatively, it was possible to perform the optimal seismic design by using computer algorithms for at least in the use of braces.

Exploratory study on the model of the software educational effectiveness for non-major undergraduate students (대학 소프트웨어 기초교육 효과성 모형 탐색)

  • Hong, Seongyoun;Seo, Jooyoung;Goo, Eunhee;Shin, Seunghun;Oh, Hayoung;Lee, Taekkyeun
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.5
    • /
    • pp.427-440
    • /
    • 2019
  • Software courses required for all students regardless of their major in many universities. SW educational effectiveness model needs to be developed to enable effective communication among students, professors, and SW educators, and to identify the responsibilities of SW educators. SW educational effectiveness model based on literature review is composed of computational thinking, SW literacy, SW awareness, and SW attitude. Computational thinking, focused on analysis and design of problem solving processes, consists of decomposition, pattern recognition, abstraction, and algorithms. SW literacy involves viewing social development based on SW beyond information literacy in the digital age. The SW awareness and attitude were organized by considering the collegiate contexts. The SW educational effectiveness model will be used as the basis for diagnosis tools as further studies.

Development and Application of Unplugged Activity-centered Robot for Improving Creative Problem Solving Ability (창의적 문제해결력 신장을 위한 언플러그드 활동 중심 로봇 개발 및 적용)

  • Hong, Jiyeon;Kim, Yungsik
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.5
    • /
    • pp.441-449
    • /
    • 2019
  • With the introduction of the 2015 revised curriculum, software education became mandatory in elementary school. The practical subject in the content for the software education consists of information ethics, algorithms, programming, and computer science. Especially, elementary school encourages the unplugged activities. Unplugged activities are preferred among the teachers in the education field as a teaching-learning method. However, those teachers pointed out that the lack of suitable unplugged activity materials was the biggest challenge. In addition, it was pointed out that the existing materials were not suitable for achievement standards, and there are many simple playing-oriented educations that are not linked to computing activities. In this study, we developed an unplugged activity-oriented robot that can be used for the elementary students to learn the basic control structure suggested in the achievement criteria SW education and to develop creative problem solving ability through various activities using sensors. The effectiveness was verified through the software class using the developed robot in this study.

Bi-directional Maximal Matching Algorithm to Segment Khmer Words in Sentence

  • Mao, Makara;Peng, Sony;Yang, Yixuan;Park, Doo-Soon
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.549-561
    • /
    • 2022
  • In the Khmer writing system, the Khmer script is the official letter of Cambodia, written from left to right without a space separator; it is complicated and requires more analysis studies. Without clear standard guidelines, a space separator in the Khmer language is used inconsistently and informally to separate words in sentences. Therefore, a segmented method should be discussed with the combination of the future Khmer natural language processing (NLP) to define the appropriate rule for Khmer sentences. The critical process in NLP with the capability of extensive data language analysis necessitates applying in this scenario. One of the essential components in Khmer language processing is how to split the word into a series of sentences and count the words used in the sentences. Currently, Microsoft Word cannot count Khmer words correctly. So, this study presents a systematic library to segment Khmer phrases using the bi-directional maximal matching (BiMM) method to address these problematic constraints. In the BiMM algorithm, the paper focuses on the Bidirectional implementation of forward maximal matching (FMM) and backward maximal matching (BMM) to improve word segmentation accuracy. A digital or prefix tree of data structure algorithm, also known as a trie, enhances the segmentation accuracy procedure by finding the children of each word parent node. The accuracy of BiMM is higher than using FMM or BMM independently; moreover, the proposed approach improves dictionary structures and reduces the number of errors. The result of this study can reduce the error by 8.57% compared to FMM and BFF algorithms with 94,807 Khmer words.

A Study on the Software Middleware Architecture of Turbo Fan Engine FADEC for Aircraft (항공기용 터보팬 엔진 FADEC의 소프트웨어 미들웨어 아키텍처에 관한 연구)

  • Changyeol Lee;Youngho Cho;Ikchan Lim;Kihyuk Kwon;Junghoe Kim;Gyujin Na;Hoyeon Jang
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.102-108
    • /
    • 2024
  • With the recent increase in the development of domestic independent turbofan engines for aircraft, there is a need to develop software for FADEC(Full Authority Digital Engine Control) with real-time fault diagnosis functions to enhance fuel efficiency, engine performance, and reliability. As engine control algorithms become more sophisticated, software is being developed using Model-Based Design(model-based development) methods. This paper introduces the Middleware architecture of FADEC(Full Authority Digital Engine Control), which connects hardware with Model-Based Design(model-based development) software. Given the high reliability and safety required for turbofan engines in aircraft, the design complies with DO-178C[1] International Airborne Systems and Equipment Certification Guidelines.

Efficient Design and Performance Analysis of a Hardware Right-shift Binary Modular Inversion Algorithm in GF(p)

  • Choi, Piljoo;Lee, Mun-Kyu;Kong, Jeong-Taek;Kim, Dong Kyue
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.425-437
    • /
    • 2017
  • For efficient hardware (HW) implementation of elliptic curve cryptography (ECC), various sub-modules for the underlying finite field operations should be implemented efficiently. Among these sub-modules, modular inversion (MI) requires the most computation; therefore, its performance might be a dominant factor of the overall performance of an ECC module. To determine the most efficient MI algorithm for an HW ECC module, we implement various classes of MI algorithms and analyze their performance. In contrast to the common belief in previous research, our results show that the right-shift binary inversion (RS) algorithm performs well when implemented in hardware. In addition, we present optimization methods to reduce the area overhead and improve the speed of the RS algorithm. By applying these methods, we propose a new RS-variant that is both fast and compact. The proposed MI module is more than twice as fast as the other two classes of MI: shifting Euclidean (SE) and left-shift binary inversion (LS) algorithms. It consumes only 15% more area and even 5% less area than SE and LS, respectively. Finally, we show that how our new method can be applied to optimize an HW ECC module.