• Title/Summary/Keyword: software algorithms

Search Result 1,093, Processing Time 0.027 seconds

Effect of the Application of the CBD Output Management Technique for the Development of Operation Software for a Space Observation System

  • Seo, Yoon Kyung;Rew, Dong Young;Kirchner, Georg;Nah, Jakyoung;Jang, Bi-Ho;Heo, Jiwoong;Youn, Cheong
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.265-276
    • /
    • 2014
  • The application of software engineering is not common in the development of astronomical observation system. While there were component-wise developments in the past, large-scale comprehensive system developments are more common in these days. In this study, current methodologies of development are reviewed to select a proper one for the development of astronomical observation system and the result of the application is presented. As the subject of this study, a project of operation software development for an astronomical observation system which runs on the ground is selected. And the output management technique based on Component Based Development which is one of the relatively recent methodologies has been applied. Since the nature of the system requires lots of arithmetic algorithms and it has great impact on the overall performance of the entire system, a prototype model is developed to verify major functions and performance. Consequently, it was possible to verify the compliance with the product requirements through the requirement tracing table and also it was possible to keep to the schedule. Besides, it was suggested that a few improvements could be possible based on the experience of the application of conventional output management technique. This study is the first application of the software development methodology in the domestic astronomical observation system area. The process and results of this study would contribute to the investigation for a more appropriate methodology in the area of similar system development.

A Vectorization Technique at Object Code Level (목적 코드 레벨에서의 벡터화 기법)

  • Lee, Dong-Ho;Kim, Ki-Chang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.5
    • /
    • pp.1172-1184
    • /
    • 1998
  • ILP(Instruction Level Parallelism) processors use code reordering algorithms to expose parallelism in a given sequential program. When applied to a loop, this algorithm produces a software-pipelined loop. In a software-pipelined loop, each iteration contains a sequence of parallel instructions that are composed of data-independent instructions collected across from several iterations. For vector loops, however the software pipelining technique can not expose the maximum parallelism because it schedules the program based only on data-dependencies. This paper proposes to schedule differently for vector loops. We develop an algorithm to detect vector loops at object code level and suggest a new vector scheduling algorithm for them. Our vector scheduling improves the performance because it can schedule not only based on data-dependencies but on loop structure or iteration conditions at the object code level. We compare the resulting schedules with those by software-pipelining techniques in the aspect of performance.

  • PDF

Robustness Examination of Tracking Performance in the Presence of Ionospheric Scintillation Using Software GPS/SBAS Receiver

  • Kondo, Shun-Ichiro;Kubo, Nobuaki;Yasuda, Akio
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.235-240
    • /
    • 2006
  • Ionospheric scintillation induces a rapid change in the amplitude and phase of radio wave signals. This is due to irregularities of electron density in the F-region of the ionosphere. It reduces the accuracy of both pseudorange and carrier phase measurements in GPS/satellite based Augmentation system (SBAS) receivers, and can cause loss of lock on the satellite signal. Scintillation is not as strong at mid-latitude regions such that positioning is not affected as much. Severe effects of scintillation occur mainly in a band approximately 20 degrees on either side of the magnetic equator and sometimes in the polar and auroral regions. Most scintillation occurs for a few hours after sunset during the peak years of the solar cycle. This paper focuses on estimation of the effects of ionospheric scintillation on GPS and SBAS signals using a software receiver. Software receivers have the advantage of flexibility over conventional receivers in examining performance. PC based receivers are especially effective in studying errors such as multipath and ionospheric scintillation. This is because it is possible to analyze IF signal data stored in host PC by the various processing algorithms. A L1 C/A software GPS receiver was developed consisting of a RF front-end module and a signal processing program on the PC. The RF front-end module consists of a down converter and a general purpose device for acquiring data. The signal processing program written in MATLAB implements signal acquisition, tracking, and pseudorange measurements. The receiver achieves standalone positioning with accuracy between 5 and 10 meters in 2drms. Typical phase locked loop (PLL) designs of GPS/SBAS receivers enable them to handle moderate amounts of scintillation. So the effects of ionospheric scintillation was estimated on the performance of GPS L1 C/A and SBAS receivers in terms of degradation of PLL accuracy considering the effect of various noise sources such as thermal noise jitter, ionospheric phase jitter and dynamic stress error.

  • PDF

Study of Parallelization Methods for Software based Real-time HEVC Encoder Implementation (소프트웨어 기반 실시간 HEVC 인코더 구현을 위한 병렬화 기법에 관한 연구)

  • Ahn, Yong-Jo;Hwang, Tae-Jin;Lee, Dongkyu;Kim, Sangmin;Oh, Seoung-Jun;Sim, Dong-Gyu
    • Journal of Broadcast Engineering
    • /
    • v.18 no.6
    • /
    • pp.835-849
    • /
    • 2013
  • Joint Collaborative Team on Video Coding (JCT-VC), which have founded ISO/IEC MPEG and ITU-T VCEG, has standardized High Efficiency Video Coding (HEVC). Standardization of HEVC has started with purpose of twice or more coding performance compared to H.264/AVC. However, flexible and hierarchical coding block and recursive coding structure are problems to overcome of HEVC standard. Many fast encoding algorithms for reducing computational complexity of HEVC encoder have been proposed. However, it is hard to implement a real-time HEVC encoder only with those fast encoding algorithms. In this paper, for implementation of software-based real-time HEVC encoder, data-level parallelism using SIMD instructions and CPU/GPU multi-threading methods are proposed. And we also proposed appropriate operations and functional modules to apply the proposed methods on HM 10.0 software. Evaluation of the proposed methods implemented on HM 10.0 software showed 20-30fps for $832{\times}480$ sequences and 5-10fps for $1920{\times}1080$ sequences, respectively.

Self-Diagnostic Signal Monitoring System of KWP2000 Vehicle ECU using Bluetooth

  • Choi, Kwang-Hun;Lee, Hyun-Ho;Lee, Young-Choon;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.132-137
    • /
    • 2004
  • On-Board Diagnostic(OBD) systems are in most cars and light trucks on the load today. During the 1970's and early 1980's manufacturers started using electronic means to control engine functions and diagnose engine problems. The CARB's diagnostic requirements to meet EPA emission standards have been designated as OBD with a goal of monitoring all of the emissions-related components, as well as the chassis, body, accessory devices and the diagnostic control network of the vehicle for proper operation. In this paper, we present a remote measurement system for the wireless monitoring of diagnosis signal and sensors output signals of ECU adopted KWP2000, united the OBD communication protocol, on OBD-compliant vehicle using the wirless communication technique of Bluetooth. In order to measure the ECU signals, the interface circuit is designed to communicate ECU and designed terminal wirelessly according to the ISO, SAE regulation of communication protocol standard. A microprocessor S3C3410X is used for communicating ECU signals. The embedded system's software is programmed to measure the ECU signals using the ARM compiler and ANCI C based on MicroC/OS kernel to communicate between bluetooth modules using bluetooth stack. The diagnostic system is developed using Visual C++ MFC and protocol stack of bluetooth for Windows environment. The self-diagnosis and sensor output signals of ECU is able to monitor using PC with bluetooth board connected in serial port of PC. The algorithms for measuring the ECU sensor output and self-diagnostic signals are verified to monitor ECU state. At the same time, the information to fix the vehicle's problem can be shown on the developed monitoring software. The possibility for remote measurement of self-diagnosis and sensor signals of ECU adopted KWP2000 in embedded system verified through the developed systems and algorithms.

  • PDF

IDENTIFICATION OF FALSIFIED DRUGS USING NEAR-INFRARED SPECTROSCOPY

  • Scafi, Sergio H.F.;Pasquini, Celio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3112-3112
    • /
    • 2001
  • Near-Infrared Spectroscopy (NIRS) was investigated aiming at the identification of falsified drugs. The identification is based on comparison of the NIR spectrum of a sample with a typical spectra of an authentic drug using multivariate modelling and classification algorithms (PCA/SIMCA). Two spectrophotometers (Brimrose - Luminar 2000 and 2030), based on acoustic-optical filter (AOTF) technology, sharing the same controlling computer, software (Brimrose - Snap 2.03) and the data acquisition electronics, were employed. The Luminar 2000 scans the range 850 1800 nm and was employed for transmitance/absorbance measurements of liquids with a transflectance optical bundle probe with total optical path of 5 mm and a circular area of 0.5 $\textrm{cm}^2$. Model 2030 scans the rage 1100 2400 nm and was employed for reflectance measurement of solids drugs. 300 spectra, acquired in about 20 s, were averaged for each sample. Chemometric treatment of the spectral data, modelling and classification were performed by using the Unscrambler 7.5 software (CAMO Norway). This package provides the Principal Component Analysis (PCA) and SIMCA algorithms, used for modelling and classification, respectively. Initially, NIRS was evaluated for spectrum acquisition of various drugs, selected in order to accomplish the diversity of physico-chemical characteristics found among commercial products. Parameters which could affect the spectra of a given drug (especially if presented as solid tablets) were investigated and the results showed that the first derivative can minimize spectral changes associated with tablet geometry, physical differences in their faces and position in relation to the probe beam. The effect of ambient humidity and temperature were also investigated. The first factor needs to be controlled for model construction because the ambient humidity can cause spectral alterations that should cause the wrong classification of a real drug if the factor is not considered by the model.

  • PDF

Design and Implementation of Simulator of Launch Control System (발사관제시스템 시뮬레이터의 설계 및 구현)

  • An, Jae-Chel;Moon, Kyung-Rok;Oh, Il-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.657-665
    • /
    • 2016
  • Launch Control System(LCS) performs the pre-launch preparation and launch operation during launch campaign. The successful launch operation is basically influenced by hardware and software of LCS. Especially, a trivial errors in control algorithm can cause critical problem or disaster in launch operation. Therefore, the hidden or implicit errors should be distinguished and eliminated by the verification test in advance. In this paper, the design and implementation of hardware and software simulator which have already been used in LCS verification will be introduced. By presenting the detailed design and flowchart-based algorithms, we make other similar systems adopt the implementation philosophies of this paper. Especially, this paper emphasizes that all the simulation algorithms work on the self-controller in LCS without using separated computer or PLC.

Imputation Accuracy from Low to Moderate Density Single Nucleotide Polymorphism Chips in a Thai Multibreed Dairy Cattle Population

  • Jattawa, Danai;Elzo, Mauricio A.;Koonawootrittriron, Skorn;Suwanasopee, Thanathip
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.464-470
    • /
    • 2016
  • The objective of this study was to investigate the accuracy of imputation from low density (LDC) to moderate density SNP chips (MDC) in a Thai Holstein-Other multibreed dairy cattle population. Dairy cattle with complete pedigree information (n = 1,244) from 145 dairy farms were genotyped with GeneSeek GGP20K (n = 570), GGP26K (n = 540) and GGP80K (n = 134) chips. After checking for single nucleotide polymorphism (SNP) quality, 17,779 SNP markers in common between the GGP20K, GGP26K, and GGP80K were used to represent MDC. Animals were divided into two groups, a reference group (n = 912) and a test group (n = 332). The SNP markers chosen for the test group were those located in positions corresponding to GeneSeek GGP9K (n = 7,652). The LDC to MDC genotype imputation was carried out using three different software packages, namely Beagle 3.3 (population-based algorithm), FImpute 2.2 (combined family- and population-based algorithms) and Findhap 4 (combined family- and population-based algorithms). Imputation accuracies within and across chromosomes were calculated as ratios of correctly imputed SNP markers to overall imputed SNP markers. Imputation accuracy for the three software packages ranged from 76.79% to 93.94%. FImpute had higher imputation accuracy (93.94%) than Findhap (84.64%) and Beagle (76.79%). Imputation accuracies were similar and consistent across chromosomes for FImpute, but not for Findhap and Beagle. Most chromosomes that showed either high (73%) or low (80%) imputation accuracies were the same chromosomes that had above and below average linkage disequilibrium (LD; defined here as the correlation between pairs of adjacent SNP within chromosomes less than or equal to 1 Mb apart). Results indicated that FImpute was more suitable than Findhap and Beagle for genotype imputation in this Thai multibreed population. Perhaps additional increments in imputation accuracy could be achieved by increasing the completeness of pedigree information.

Development of a New Pedestrian Avoidance Algorithm considering a Social Distance for Social Robots (소셜로봇을 위한 사회적 거리를 고려한 새로운 보행자 회피 알고리즘 개발)

  • Yoo, Jooyoung;Kim, Daewon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.734-741
    • /
    • 2020
  • This article proposes a new pedestrian avoidance algorithm for social robots that coexist and communicate with humans and do not induce stress caused by invasion of psychological safety distance(Social Distance). To redefine the pedestrian model, pedestrians are clustered according to the pedestrian's gait characteristics(straightness, speed) and a social distance is defined for each pedestrian cluster. After modeling pedestrians(obstacles) with the social distances, integrated navigation algorithm is completed by applying the newly defined pedestrian model to commercial obstacle avoidance and path planning algorithms. To show the effectiveness of the proposed algorithm, two commercial obstacle avoidance & path planning algorithms(the Dynamic Window Approach (DWA) algorithm and the Timed Elastic Bands (TEB) algorithm) are used. Four cases were experimented in applying and non-applying the new pedestrian model, respectively. Simulation results show that the proposed algorithm can significantly reduce the stress index of pedestrians without loss of traveling time.

A GA-based Inductive Learning System for Extracting the PROSPECTOR`s Classification Rules (프러스펙터의 분류 규칙 습득을 위한 유전자 알고리즘 기반 귀납적 학습 시스템)

  • Kim, Yeong-Jun
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.11
    • /
    • pp.822-832
    • /
    • 2001
  • We have implemented an inductive learning system that learns PROSPECTOR-rule-style classification rules from sets of examples. In our a approach, a genetic algorithm is used in which a population consists of rule-sets and rule-sets generate offspring through the exchange of rules relying on genetic operators such as crossover, mutation, and inversion operators. In this paper, we describe our learning environment centering on the syntactic structure and meaning of classification rules, the structure of a population, and the implementation of genetic operators. We also present a method to evaluate the performance of rules and a heuristic approach to generate rules, which are developed to implement mutation operators more efficiently. Moreover, a method to construct a classification system using multiple learned rule-sets to enhance the performance of a classification system is also explained. The performance of our learning system is compared with other learning algorithms, such as neural networks and decision tree algorithms, using various data sets.

  • PDF