• Title/Summary/Keyword: software algorithms

Search Result 1,093, Processing Time 0.033 seconds

Anomaly detection and attack type classification mechanism using Extra Tree and ANN (Extra Tree와 ANN을 활용한 이상 탐지 및 공격 유형 분류 메커니즘)

  • Kim, Min-Gyu;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.79-85
    • /
    • 2022
  • Anomaly detection is a method to detect and block abnormal data flows in general users' data sets. The previously known method is a method of detecting and defending an attack based on a signature using the signature of an already known attack. This has the advantage of a low false positive rate, but the problem is that it is very vulnerable to a zero-day vulnerability attack or a modified attack. However, in the case of anomaly detection, there is a disadvantage that the false positive rate is high, but it has the advantage of being able to identify, detect, and block zero-day vulnerability attacks or modified attacks, so related studies are being actively conducted. In this study, we want to deal with these anomaly detection mechanisms, and we propose a new mechanism that performs both anomaly detection and classification while supplementing the high false positive rate mentioned above. In this study, the experiment was conducted with five configurations considering the characteristics of various algorithms. As a result, the model showing the best accuracy was proposed as the result of this study. After detecting an attack by applying the Extra Tree and Three-layer ANN at the same time, the attack type is classified using the Extra Tree for the classified attack data. In this study, verification was performed on the NSL-KDD data set, and the accuracy was 99.8%, 99.1%, 98.9%, 98.7%, and 97.9% for Normal, Dos, Probe, U2R, and R2L, respectively. This configuration showed superior performance compared to other models.

A Study on Tire Surface Defect Detection Method Using Depth Image (깊이 이미지를 이용한 타이어 표면 결함 검출 방법에 관한 연구)

  • Kim, Hyun Suk;Ko, Dong Beom;Lee, Won Gok;Bae, You Suk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.211-220
    • /
    • 2022
  • Recently, research on smart factories triggered by the 4th industrial revolution is being actively conducted. Accordingly, the manufacturing industry is conducting various studies to improve productivity and quality based on deep learning technology with robust performance. This paper is a study on the method of detecting tire surface defects in the visual inspection stage of the tire manufacturing process, and introduces a tire surface defect detection method using a depth image acquired through a 3D camera. The tire surface depth image dealt with in this study has the problem of low contrast caused by the shallow depth of the tire surface and the difference in the reference depth value due to the data acquisition environment. And due to the nature of the manufacturing industry, algorithms with performance that can be processed in real time along with detection performance is required. Therefore, in this paper, we studied a method to normalize the depth image through relatively simple methods so that the tire surface defect detection algorithm does not consist of a complex algorithm pipeline. and conducted a comparative experiment between the general normalization method and the normalization method suggested in this paper using YOLO V3, which could satisfy both detection performance and speed. As a result of the experiment, it is confirmed that the normalization method proposed in this paper improved performance by about 7% based on mAP 0.5, and the method proposed in this paper is effective.

Grasping a Target Object in Clutter with an Anthropomorphic Robot Hand via RGB-D Vision Intelligence, Target Path Planning and Deep Reinforcement Learning (RGB-D 환경인식 시각 지능, 목표 사물 경로 탐색 및 심층 강화학습에 기반한 사람형 로봇손의 목표 사물 파지)

  • Ryu, Ga Hyeon;Oh, Ji-Heon;Jeong, Jin Gyun;Jung, Hwanseok;Lee, Jin Hyuk;Lopez, Patricio Rivera;Kim, Tae-Seong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.9
    • /
    • pp.363-370
    • /
    • 2022
  • Grasping a target object among clutter objects without collision requires machine intelligence. Machine intelligence includes environment recognition, target & obstacle recognition, collision-free path planning, and object grasping intelligence of robot hands. In this work, we implement such system in simulation and hardware to grasp a target object without collision. We use a RGB-D image sensor to recognize the environment and objects. Various path-finding algorithms been implemented and tested to find collision-free paths. Finally for an anthropomorphic robot hand, object grasping intelligence is learned through deep reinforcement learning. In our simulation environment, grasping a target out of five clutter objects, showed an average success rate of 78.8%and a collision rate of 34% without path planning. Whereas our system combined with path planning showed an average success rate of 94% and an average collision rate of 20%. In our hardware environment grasping a target out of three clutter objects showed an average success rate of 30% and a collision rate of 97% without path planning whereas our system combined with path planning showed an average success rate of 90% and an average collision rate of 23%. Our results show that grasping a target object in clutter is feasible with vision intelligence, path planning, and deep RL.

Predicting the Number of Confirmed COVID-19 Cases Using Deep Learning Models with Search Term Frequency Data (검색어 빈도 데이터를 반영한 코로나 19 확진자수 예측 딥러닝 모델)

  • Sungwook Jung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.387-398
    • /
    • 2023
  • The COVID-19 outbreak has significantly impacted human lifestyles and patterns. It was recommended to avoid face-to-face contact and over-crowded indoor places as much as possible as COVID-19 spreads through air, as well as through droplets or aerosols. Therefore, if a person who has contacted a COVID-19 patient or was at the place where the COVID-19 patient occurred is concerned that he/she may have been infected with COVID-19, it can be fully expected that he/she will search for COVID-19 symptoms on Google. In this study, an exploratory data analysis using deep learning models(DNN & LSTM) was conducted to see if we could predict the number of confirmed COVID-19 cases by summoning Google Trends, which played a major role in surveillance and management of influenza, again and combining it with data on the number of confirmed COVID-19 cases. In particular, search term frequency data used in this study are available publicly and do not invade privacy. When the deep neural network model was applied, Seoul (9.6 million) with the largest population in South Korea and Busan (3.4 million) with the second largest population recorded lower error rates when forecasting including search term frequency data. These analysis results demonstrate that search term frequency data plays an important role in cities with a population above a certain size. We also hope that these predictions can be used as evidentiary materials to decide policies, such as the deregulation or implementation of stronger preventive measures.

Ensemble Learning-Based Prediction of Good Sellers in Overseas Sales of Domestic Books and Keyword Analysis of Reviews of the Good Sellers (앙상블 학습 기반 국내 도서의 해외 판매 굿셀러 예측 및 굿셀러 리뷰 키워드 분석)

  • Do Young Kim;Na Yeon Kim;Hyon Hee Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.173-178
    • /
    • 2023
  • As Korean literature spreads around the world, its position in the overseas publishing market has become important. As demand in the overseas publishing market continues to grow, it is essential to predict future book sales and analyze the characteristics of books that have been highly favored by overseas readers in the past. In this study, we proposed ensemble learning based prediction model and analyzed characteristics of the cumulative sales of more than 5,000 copies classified as good sellers published overseas over the past 5 years. We applied the five ensemble learning models, i.e., XGBoost, Gradient Boosting, Adaboost, LightGBM, and Random Forest, and compared them with other machine learning algorithms, i.e., Support Vector Machine, Logistic Regression, and Deep Learning. Our experimental results showed that the ensemble algorithm outperforms other approaches in troubleshooting imbalanced data. In particular, the LightGBM model obtained an AUC value of 99.86% which is the best prediction performance. Among the features used for prediction, the most important feature is the author's number of overseas publications, and the second important feature is publication in countries with the largest publication market size. The number of evaluation participants is also an important feature. In addition, text mining was performed on the four book reviews that sold the most among good-selling books. Many reviews were interested in stories, characters, and writers and it seems that support for translation is needed as many of the keywords of "translation" appear in low-rated reviews.

Motion Vector Based Overlay Metrology Algorithm for Wafer Alignment (웨이퍼 정렬을 위한 움직임 벡터 기반의 오버레이 계측 알고리즘 )

  • Lee Hyun Chul;Woo Ho Sung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.3
    • /
    • pp.141-148
    • /
    • 2023
  • Accurate overlay metrology is essential to achieve high yields of semiconductor products. Overlay metrology performance is greatly affected by overlay target design and measurement method. Therefore, in order to improve the performance of the overlay target, measurement methods applicable to various targets are required. In this study, we propose a new algorithm that can measure image-based overlay. The proposed measurement algorithm can estimate the sub-pixel position by using a motion vector. The motion vector may estimate the position of the sub-pixel unit by applying a quadratic equation model through polynomial expansion using pixels in the selected region. The measurement method using the motion vector can calculate the stacking error in all directions at once, unlike the existing correlation coefficient-based measurement method that calculates the stacking error on the X-axis and the Y-axis, respectively. Therefore, more accurate overlay measurement is possible by reflecting the relationship between the X-axis and the Y-axis. However, since the amount of computation is increased compared to the existing correlation coefficient-based algorithm, more computation time may be required. The purpose of this study is not to present an algorithm improved over the existing method, but to suggest a direction for a new measurement method. Through the experimental results, it was confirmed that measurement results similar to those of the existing method could be obtained.

An analysis of students' online class preference depending on the gender and levels of school using Apriori Algorithm (Apriori 알고리즘을 활용한 학습자의 성별과 학교급에 따른 온라인 수업 유형 선호도 분석)

  • Kim, Jinhee;Hwang, Doohee;Lee, Sang-Soog
    • Journal of Digital Convergence
    • /
    • v.20 no.1
    • /
    • pp.33-39
    • /
    • 2022
  • This study aims to investigate the online class preference depending on students' gender and school level. To achieve this aim, the study conducted a survey on 4,803 elementary, middle, and high school students in 17 regions nationwide. The valid data of 4,524 were then analyzed using the Apriori algorithm to discern the associated patterns of the online class preference corresponding to their gender and school level. As a result, a total of 16 rules, including 7 from elementary school students, 4 from middle school students, and 5 from high school students were derived. To be specific, elementary school male students preferred software-based classes whereas elementary female students preferred maker-based classes. In the case of middle school, both male and female students preferred virtual experience-based classes. On the other hand, high school students had a higher preference for subject-specific lecture-based classes. The study findings can serve as empirical evidence for explaining the needs of online classes perceived by K-12 students. In addition, this study can be used as basic research to present and suggest areas of improvement for diversifying online classes. Future studies can further conduct in-depth analysis on the development of various online class activities and models, the design of online class platforms, and the female students' career motivation in the field of science and technology.

A Study on the Abstraction of Movements Based on Laban's Space Theory "Choreutics" (라반의 공간조화이론 "코레우틱스(Choreutics)"를 활용한 움직임의 추상적 시각화 연구)

  • Kim, Hyeran;Lee, Sang Wook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.371-381
    • /
    • 2017
  • This paper presents a methodology for creating abstract animation based on the human movement theories originating from the work of dance theorist Rudolf von Laban. Laban Movement Analysis is a method and language for describing, visualizing, interpreting and documenting all varieties of human movement, and Choreutics is based on universal patterns of nature and of human as part of a universal design. Laban defines the space of movements in a profoundly dualistic way. Outwardly, his objective and scientific definitions provide a concrete base for generating human movements in computer graphics in terms of geometric and motion primitives such as points, lines, planes, polygons, linear and nonlinear movements. On the other hand, he also offers a system for understanding the subtle characteristics about the way a movement is dynamically done with respect to inner intention. Laban's interpretations of human motion can be utilized potentially in plastic arts and computer arts. Our work was inspired by those physical and psychological analyses and computer algorithms have been developed for creating abstract animation. We presented our computer animation works entitled "Choreography" in the exhibitions: a special section in "2015 Craft Trend Fair" and "Make Your Movement" held in the Korean Cultural Centre in UK, 2016. In this paper, we describe our ideas and methods for creating abstract object movements based on the Laban's motion representations.

AutoML Machine Learning-Based for Detecting Qshing Attacks Malicious URL Classification Technology Research and Service Implementation (큐싱 공격 탐지를 위한 AutoML 머신러닝 기반 악성 URL 분류 기술 연구 및 서비스 구현)

  • Dong-Young Kim;Gi-Seong Hwang
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.9-15
    • /
    • 2024
  • In recent trends, there has been an increase in 'Qshing' attacks, a hybrid form of phishing that exploits fake QR (Quick Response) codes impersonating government agencies to steal personal and financial information. Particularly, this attack method is characterized by its stealthiness, as victims can be redirected to phishing pages or led to download malicious software simply by scanning a QR code, making it difficult for them to realize they have been targeted. In this paper, we have developed a classification technique utilizing machine learning algorithms to identify the maliciousness of URLs embedded in QR codes, and we have explored ways to integrate this with existing QR code readers. To this end, we constructed a dataset from 128,587 malicious URLs and 428,102 benign URLs, extracting 35 different features such as protocol and parameters, and used AutoML to identify the optimal algorithm and hyperparameters, achieving an accuracy of approximately 87.37%. Following this, we designed the integration of the trained classification model with existing QR code readers to implement a service capable of countering Qshing attacks. In conclusion, our findings confirm that deriving an optimized algorithm for classifying malicious URLs in QR codes and integrating it with existing QR code readers presents a viable solution to combat Qshing attacks.

Uncertainty Calculation Algorithm for the Estimation of the Radiochronometry of Nuclear Material (핵물질 연대측정을 위한 불확도 추정 알고리즘 연구)

  • JaeChan Park;TaeHoon Jeon;JungHo Song;MinSu Ju;JinYoung Chung;KiNam Kwon;WooChul Choi;JaeHak Cheong
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.345-357
    • /
    • 2023
  • Nuclear forensics has been understood as a mendatory component in the international society for nuclear material control and non-proliferation verification. Radiochronometry of nuclear activities for nuclear forensics are decay series characteristics of nuclear materials and the Bateman equation to estimate when nuclear materials were purified and produced. Radiochronometry values have uncertainty of measurement due to the uncertainty factors in the estimation process. These uncertainties should be calculated using appropriate evaluation methods that are representative of the accuracy and reliability. The IAEA, US, and EU have been researched on radiochronometry and uncertainty of measurement, although the uncertainty calculation method using the Bateman equation is limited by the underestimation of the decay constant and the impossibility of estimating the age of more than one generation, so it is necessary to conduct uncertainty calculation research using computer simulation such as Monte Carlo method. This highlights the need for research using computational simulations, such as the Monte Carlo method, to overcome these limitations. In this study, we have analyzed mathematical models and the LHS (Latin Hypercube Sampling) methods to enhance the reliability of radiochronometry which is to develop an uncertainty algorithm for nuclear material radiochronometry using Bateman Equation. We analyzed the LHS method, which can obtain effective statistical results with a small number of samples, and applied it to algorithms that are Monte Carlo methods for uncertainty calculation by computer simulation. This was implemented through the MATLAB computational software. The uncertainty calculation model using mathematical models demonstrated characteristics based on the relationship between sensitivity coefficients and radiative equilibrium. Computational simulation random sampling showed characteristics dependent on random sampling methods, sampling iteration counts, and the probability distribution of uncertainty factors. For validation, we compared models from various international organizations, mathematical models, and the Monte Carlo method. The developed algorithm was found to perform calculations at an equivalent level of accuracy compared to overseas institutions and mathematical model-based methods. To enhance usability, future research and comparisons·validations need to incorporate more complex decay chains and non-homogeneous conditions. The results of this study can serve as foundational technology in the nuclear forensics field, providing tools for the identification of signature nuclides and aiding in the research, development, comparison, and validation of related technologies.