• Title/Summary/Keyword: software algorithms

Search Result 1,093, Processing Time 0.023 seconds

Korean Semantic Role Labeling Based on Suffix Structure Analysis and Machine Learning (접사 구조 분석과 기계 학습에 기반한 한국어 의미 역 결정)

  • Seok, Miran;Kim, Yu-Seop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.555-562
    • /
    • 2016
  • Semantic Role Labeling (SRL) is to determine the semantic relation of a predicate and its argu-ments in a sentence. But Korean semantic role labeling has faced on difficulty due to its different language structure compared to English, which makes it very hard to use appropriate approaches developed so far. That means that methods proposed so far could not show a satisfied perfor-mance, compared to English and Chinese. To complement these problems, we focus on suffix information analysis, such as josa (case suffix) and eomi (verbal ending) analysis. Korean lan-guage is one of the agglutinative languages, such as Japanese, which have well defined suffix structure in their words. The agglutinative languages could have free word order due to its de-veloped suffix structure. Also arguments with a single morpheme are then labeled with statistics. In addition, machine learning algorithms such as Support Vector Machine (SVM) and Condi-tional Random Fields (CRF) are used to model SRL problem on arguments that are not labeled at the suffix analysis phase. The proposed method is intended to reduce the range of argument instances to which machine learning approaches should be applied, resulting in uncertain and inaccurate role labeling. In experiments, we use 15,224 arguments and we are able to obtain approximately 83.24% f1-score, increased about 4.85% points compared to the state-of-the-art Korean SRL research.

Model-Based Plane Detection in Disparity Space Using Surface Partitioning (표면분할을 이용한 시차공간상에서의 모델 기반 평면검출)

  • Ha, Hong-joon;Lee, Chang-hun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.10
    • /
    • pp.465-472
    • /
    • 2015
  • We propose a novel plane detection in disparity space and evaluate its performance. Our method simplifies and makes scenes in disparity space easily dealt with by approximating various surfaces as planes. Moreover, the approximated planes can be represented in the same size as in the real world, and can be employed for obstacle detection and camera pose estimation. Using a stereo matching technique, our method first creates a disparity image which consists of binocular disparity values at xy-coordinates in the image. Slants of disparity values are estimated by exploiting a line simplification algorithm which allows our method to reflect global changes against x or y axis. According to pairs of x and y slants, we label the disparity image. 4-connected disparities with the same label are grouped, on which least squared model estimates plane parameters. N plane models with the largest group of disparity values which satisfy their plane parameters are chosen. We quantitatively and qualitatively evaluate our plane detection. The result shows 97.9%와 86.6% of quality in our experiment respectively on cones and cylinders. Proposed method excellently extracts planes from Middlebury and KITTI dataset which are typically used for evaluation of stereo matching algorithms.

Real-time Hand Region Detection based on Cascade using Depth Information (깊이정보를 이용한 케스케이드 방식의 실시간 손 영역 검출)

  • Joo, Sung Il;Weon, Sun Hee;Choi, Hyung Il
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.10
    • /
    • pp.713-722
    • /
    • 2013
  • This paper proposes a method of using depth information to detect the hand region in real-time based on the cascade method. In order to ensure stable and speedy detection of the hand region even under conditions of lighting changes in the test environment, this study uses only features based on depth information, and proposes a method of detecting the hand region by means of a classifier that uses boosting and cascading methods. First, in order to extract features using only depth information, we calculate the difference between the depth value at the center of the input image and the average of depth value within the segmented block, and to ensure that hand regions of all sizes will be detected, we use the central depth value and the second order linear model to predict the size of the hand region. The cascade method is applied to implement training and recognition by extracting features from the hand region. The classifier proposed in this paper maintains accuracy and enhances speed by composing each stage into a single weak classifier and obtaining the threshold value that satisfies the detection rate while exhibiting the lowest error rate to perform over-fitting training. The trained classifier is used to classify the hand region, and detects the final hand region in the final merger stage. Lastly, to verify performance, we perform quantitative and qualitative comparative analyses with various conventional AdaBoost algorithms to confirm the efficiency of the hand region detection algorithm proposed in this paper.

Development of Android Smart Phone App for Analysis of Remote Sensing Images (위성영상정보 분석을 위한 안드로이드 스마트폰 앱 개발)

  • Kang, Sang-Goo;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.561-570
    • /
    • 2010
  • The purpose of this study is to develop an Android smartphone app providing analysis capabilities of remote sensing images, by using mobile browsing open sources of gvSIG, open source remote sensing software of OTB and open source DBMS of PostgreSQL. In this app, five kinds of remote sensing algorithms for filtering, segmentation, or classification are implemented, and the processed results are also stored and managed in image database to retrieve. Smartphone users can easily use their functions through graphical user interfaces of app which are internally linked to application server for image analysis processing and external DBMS. As well, a practical tiling method for smartphone environments is implemented to reduce delay time between user's requests and its processing server responses. Till now, most apps for remotely sensed image data sets are mainly concerned to image visualization, distinguished from this approach providing analysis capabilities. As the smartphone apps with remote sensing analysis functions for general users and experts are widely utilizing, remote sensing images are regarded as information resources being capable of producing actual mobile contents, not potential resources. It is expected that this study could trigger off the technological progresses and other unique attempts to develop the variety of smartphone apps for remote sensing images.

De-identifying Unstructured Medical Text and Attribute-based Utility Measurement (의료 비정형 텍스트 비식별화 및 속성기반 유용도 측정 기법)

  • Ro, Gun;Chun, Jonghoon
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.1
    • /
    • pp.121-137
    • /
    • 2019
  • De-identification is a method by which the remaining information can not be referred to a specific individual by removing the personal information from the data set. As a result, de-identification can lower the exposure risk of personal information that may occur in the process of collecting, processing, storing and distributing information. Although there have been many studies in de-identification algorithms, protection models, and etc., most of them are limited to structured data, and there are relatively few considerations on de-identification of unstructured data. Especially, in the medical field where the unstructured text is frequently used, many people simply remove all personally identifiable information in order to lower the exposure risk of personal information, while admitting the fact that the data utility is lowered accordingly. This study proposes a new method to perform de-identification by applying the k-anonymity protection model targeting unstructured text in the medical field in which de-identification is mandatory because privacy protection issues are more critical in comparison to other fields. Also, the goal of this study is to propose a new utility metric so that people can comprehend de-identified data set utility intuitively. Therefore, if the result of this research is applied to various industrial fields where unstructured text is used, we expect that we can increase the utility of the unstructured text which contains personal information.

Ensemble Deep Network for Dense Vehicle Detection in Large Image

  • Yu, Jae-Hyoung;Han, Youngjoon;Kim, JongKuk;Hahn, Hernsoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.45-55
    • /
    • 2021
  • This paper has proposed an algorithm that detecting for dense small vehicle in large image efficiently. It is consisted of two Ensemble Deep-Learning Network algorithms based on Coarse to Fine method. The system can detect vehicle exactly on selected sub image. In the Coarse step, it can make Voting Space using the result of various Deep-Learning Network individually. To select sub-region, it makes Voting Map by to combine each Voting Space. In the Fine step, the sub-region selected in the Coarse step is transferred to final Deep-Learning Network. The sub-region can be defined by using dynamic windows. In this paper, pre-defined mapping table has used to define dynamic windows for perspective road image. Identity judgment of vehicle moving on each sub-region is determined by closest center point of bottom of the detected vehicle's box information. And it is tracked by vehicle's box information on the continuous images. The proposed algorithm has evaluated for performance of detection and cost in real time using day and night images captured by CCTV on the road.

Accuracy of conventional and digital mounting of dental models: A literature review (치과용 모형의 모형 부착 과정에서 발생하는 오차에 대한 문헌 고찰)

  • Kim, Cheolmin;Ji, Woon;Chang, Jaeseung;Kim, Sunjai
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.146-152
    • /
    • 2021
  • Accurate transfer of the maxillo-mandibular relationship to an articulator (i.e., mounting) is critical in prosthetic treatment procedures. In the current study, a PubMed search was performed to review the influencing factors for the maxillo-mandibular relationship's accuracy. The search included digital mounting as well as conventional gypsum cast mounting. The results showed that a greater amount of displacement was introduced during positioning the maxillary and mandibular models to interocclusal records rather than the dimensional change of registration material. Most intraoral scanners resulted in an accurate reproduction of the maxillo-mandibular relationship for posterior quadrant scanning; however, the accuracy was declined as the scan area increased to a complete arch scan. The digital mounting accuracy was also influenced by the image processing algorithms and software versions, especially for complete arch scans.

A Development of Welding Information Management and Defect Inspection Platform based on Artificial Intelligent for Shipbuilding and Maritime Industry (인공지능 기반 조선해양 용접 품질 정보 관리 및 결함 검사 플랫폼 개발)

  • Hwang, Hun-Gyu;Kim, Bae-Sung;Woo, Yun-Tae;Yoon, Young-Wook;Shin, Sung-chul;Oh, Sang-jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.193-201
    • /
    • 2021
  • The welding has a high proportion of the production and drying of ships or offshore plants. Non-destructive testing is carried out to verify the quality of welds in Korea, radiography test (RT) is mainly used. Currently, most shipyards adopt analog-type techniques to print the films through the shoot of welding parts. Therefore, the time required from radiography test to pass or fail judgment is long and complex, and is being manually carried out by qualified inspectors. To improve this problem, this paper covers a platform for scanning and digitalizing RT films occurring in shipyards with high resolution, accumulating them in management servers, and applying artificial intelligence (AI) technology to detect welding defects. To do this, we describe the process of designing and developing RT film scanning equipment, welding inspection information integrated management platform, fault reading algorithms, visualization software, and testing and verification of each developed element in conjunction.

Method of ChatBot Implementation Using Bot Framework (봇 프레임워크를 활용한 챗봇 구현 방안)

  • Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.56-61
    • /
    • 2022
  • In this paper, we classify and present AI algorithms and natural language processing methods used in chatbots. A framework that can be used to implement a chatbot is also described. A chatbot is a system with a structure that interprets the input string by constructing the user interface in a conversational manner and selects an appropriate answer to the input string from the learned data and outputs it. However, training is required to generate an appropriate set of answers to a question and hardware with considerable computational power is required. Therefore, there is a limit to the practice of not only developing companies but also students learning AI development. Currently, chatbots are replacing the existing traditional tasks, and a practice course to understand and implement the system is required. RNN and Char-CNN are used to increase the accuracy of answering questions by learning unstructured data by applying technologies such as deep learning beyond the level of responding only to standardized data. In order to implement a chatbot, it is necessary to understand such a theory. In addition, the students presented examples of implementation of the entire system by utilizing the methods that can be used for coding education and the platform where existing developers and students can implement chatbots.

Adversarial Learning-Based Image Correction Methodology for Deep Learning Analysis of Heterogeneous Images (이질적 이미지의 딥러닝 분석을 위한 적대적 학습기반 이미지 보정 방법론)

  • Kim, Junwoo;Kim, Namgyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.457-464
    • /
    • 2021
  • The advent of the big data era has enabled the rapid development of deep learning that learns rules by itself from data. In particular, the performance of CNN algorithms has reached the level of self-adjusting the source data itself. However, the existing image processing method only deals with the image data itself, and does not sufficiently consider the heterogeneous environment in which the image is generated. Images generated in a heterogeneous environment may have the same information, but their features may be expressed differently depending on the photographing environment. This means that not only the different environmental information of each image but also the same information are represented by different features, which may degrade the performance of the image analysis model. Therefore, in this paper, we propose a method to improve the performance of the image color constancy model based on Adversarial Learning that uses image data generated in a heterogeneous environment simultaneously. Specifically, the proposed methodology operates with the interaction of the 'Domain Discriminator' that predicts the environment in which the image was taken and the 'Illumination Estimator' that predicts the lighting value. As a result of conducting an experiment on 7,022 images taken in heterogeneous environments to evaluate the performance of the proposed methodology, the proposed methodology showed superior performance in terms of Angular Error compared to the existing methods.