• Title/Summary/Keyword: software algorithms

Search Result 1,093, Processing Time 0.03 seconds

Algorithmic Price Discrimination and Negative Word-of-Mouth: The Chain Mediating Role of Deliberate attribution and Negative Emotion

  • Wei-Jia Li;Yue-Jun Wang;Zi-Yang Liu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.229-239
    • /
    • 2023
  • This study aims to explore the impact of algorithmic price discrimination on negative word-of-mouth (NWOM) through the lens of attribution theory. It also examines the mediating roles of intentional attributions and negative emotions, as well as the moderating effect of price sensitivity. For this study, 772 consumers who had purchased flight tickets completed a questionnaire survey, and the collected data were analyzed and tested using SPSS 27.0 and AMOS 24.0 software. The research findings reveal that algorithmic price discrimination has a significant positive impact on intentional attributions, negative emotions, and NWOM. Specifically, deliberate attributions and negative emotions mediate the relationship between algorithmic price discrimination and NWOM, while price sensitivity positively moderates the relationship between negative emotions and NWOM. Therefore, companies should consider disclosing algorithm details transparently in their marketing strategies to mitigate consumers' negative emotions and implement targeted strategies for consumers with different levels of price sensitivity to enhance positive word-of-mouth.

Recommendation System Development of Indirect Advertising Product through Summary Analysis of Character Web Drama (캐릭터 웹드라마 요약 분석을 통한 간접광고 제품 추천 시스템 개발)

  • Hyun-Soo Lee;Jung-Yi Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.15-20
    • /
    • 2023
  • This paper is a study on the development of an artificial intelligence (AI) system algorithm that recommends indirect advertising products suitable for character web dramas. The goal of this study is to increase viewers' content immersion and help them understand the story of the drama more deeply by recommending indirect advertising products that are suitable for writing lines for web dramas. In this study, we analyze dialogue and plot using the natural language processing model GPT, and develop two types of indirect advertising product recommendation systems, including prop type and background type, based on the analysis results. Through this, products that fit the story of the web drama are appropriately placed, allowing indirect advertisements to be exposed naturally, thereby increasing viewer immersion and enhancing the effectiveness of product promotion. There are limitations of artificial intelligence models, such as the difficulty in fully understanding hidden meanings or cultural nuances, and the difficulty in securing sufficient data for learning. However, this study will provide new insights into how AI can contribute to the production of creative works, and will be an important stepping stone to expand the possibilities of using natural language processing models in the creative industry.

Designing Dataset for Artificial Intelligence Learning for Cold Sea Fish Farming

  • Sung-Hyun KIM;Seongtak OH;Sangwon LEE
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.208-216
    • /
    • 2023
  • The purpose of our study is to design datasets for Artificial Intelligence learning for cold sea fish farming. Salmon is considered one of the most popular fish species among men and women of all ages, but most supplies depend on imports. Recently, salmon farming, which is rapidly emerging as a specialized industry in Gangwon-do, has attracted attention. Therefore, in order to successfully develop salmon farming, the need to systematically build data related to salmon and salmon farming and use it to develop aquaculture techniques is raised. Meanwhile, the catch of pollack continues to decrease. Efforts should be made to improve the major factors affecting pollack survival based on data, as well as increasing the discharge volume for resource recovery. To this end, it is necessary to systematically collect and analyze data related to pollack catch and ecology to prepare a sustainable resource management strategy. Image data was obtained using CCTV and underwater cameras to establish an intelligent aquaculture strategy for salmon and pollock, which are considered representative fish species in Gangwon-do. Using these data, we built learning data suitable for AI analysis and prediction. Such data construction can be used to develop models for predicting the growth of salmon and pollack, and to develop algorithms for AI services that can predict water temperature, one of the key variables that determine the survival rate of pollack. This in turn will enable intelligent aquaculture and resource management taking into account the ecological characteristics of fish species. These studies look forward to achievements on an important level for sustainable fisheries and fisheries resource management.

Numerical Analysis and Simulation for the Pricing of Bond on Term-Structure Interest Rate model with Jump (점프 항을 포함하는 이자율 기간구조 모형의 채권 가격결정을 위한 수치적 분석 및 시뮬레이션)

  • Kisoeb Park
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.93-99
    • /
    • 2024
  • In this paper, we derive the Partial Differential Bond Price Equation (PDBPE) by using Ito's Lemma to determine the pricing of bond on term-structure of interest rate (TSIR) model with jump. From PDBPE, the Maclaurin series (MS) and the moment-generating function (MGF) for the exponential function are used to obtain a numerical solution (NS) of the bond prices. And an algorithm for determining bond prices using Monte Carlo Simulation (MCS) techniques is proposed, and the pricing of bond is determined through the simulation process. Comparing the results of the implementation of the above two pricing methods, the relative error (RE) is obtained, which means the ratio of NS and MCS. From the results, we can confirm that the RE is less than around 2.2%, which means that the pricing of bond can be predicted very accurately using the proposed algorithms as well as numerical analysis. Moreover, it was confirmed that the bond price obtained using the MS has a relatively smaller error than the pricing of bond obtained by using the MGF.

A Study on Radar Video Fusion Systems for Pedestrian and Vehicle Detection (보행자 및 차량 검지를 위한 레이더 영상 융복합 시스템 연구)

  • Sung-Youn Cho;Yeo-Hwan Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.197-205
    • /
    • 2024
  • Development of AI and big data-based algorithms to advance and optimize the recognition and detection performance of various static/dynamic vehicles in front and around the vehicle at a time when securing driving safety is the most important point in the development and commercialization of autonomous vehicles. etc. are being studied. However, there are many research cases for recognizing the same vehicle by using the unique advantages of radar and camera, but deep learning image processing technology is not used, or only a short distance is detected as the same target due to radar performance problems. Therefore, there is a need for a convergence-based vehicle recognition method that configures a dataset that can be collected from radar equipment and camera equipment, calculates the error of the dataset, and recognizes it as the same target. In this paper, we aim to develop a technology that can link location information according to the installation location because data errors occur because it is judged as the same object depending on the installation location of the radar and CCTV (video).

Development of a Multi-disciplinary Video Identification System for Autonomous Driving (자율주행을 위한 융복합 영상 식별 시스템 개발)

  • Sung-Youn Cho;Jeong-Joon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.65-74
    • /
    • 2024
  • In recent years, image processing technology has played a critical role in the field of autonomous driving. Among them, image recognition technology is essential for the safety and performance of autonomous vehicles. Therefore, this paper aims to develop a hybrid image recognition system to enhance the safety and performance of autonomous vehicles. In this paper, various image recognition technologies are utilized to construct a system that recognizes and tracks objects in the vehicle's surroundings. Machine learning and deep learning algorithms are employed for this purpose, and objects are identified and classified in real-time through image processing and analysis. Furthermore, this study aims to fuse image processing technology with vehicle control systems to improve the safety and performance of autonomous vehicles. To achieve this, the identified object's information is transmitted to the vehicle control system to enable appropriate autonomous driving responses. The developed hybrid image recognition system in this paper is expected to significantly improve the safety and performance of autonomous vehicles. This is expected to accelerate the commercialization of autonomous vehicles.

Missing Value Imputation Technique for Water Quality Dataset

  • Jin-Young Jun;Youn-A Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.4
    • /
    • pp.39-46
    • /
    • 2024
  • Many researchers make efforts to evaluate water quality using various models. Such models require a dataset without missing values, but in real world, most datasets include missing values for various reasons. Simple deletion of samples having missing value(s) could distort distribution of the underlying data and pose a significant risk of biasing the model's inference when the missing mechanism is not MCAR. In this study, to explore the most appropriate technique for handing missing values in water quality data, several imputation techniques were experimented based on existing KNN and MICE imputation with/without the generative neural network model, Autoencoder(AE) and Denoising Autoencoder(DAE). The results shows that KNN and MICE combined imputation without generative networks provides the closest estimated values to the true values. When evaluating binary classification models based on support vector machine and ensemble algorithms after applying the combined imputation technique to the observed water quality dataset with missing values, it shows better performance in terms of Accuracy, F1 score, RoC-AuC score and MCC compared to those evaluated after deleting samples having missing values.

Goal-oriented Movement Reality-based Skeleton Animation Using Machine Learning

  • Yu-Won JEONG
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.267-277
    • /
    • 2024
  • This paper explores the use of machine learning in game production to create goal-oriented, realistic animations for skeleton monsters. The purpose of this research is to enhance realism by implementing intelligent movements in monsters within game development. To achieve this, we designed and implemented a learning model for skeleton monsters using reinforcement learning algorithms. During the machine learning process, various reward conditions were established, including the monster's speed, direction, leg movements, and goal contact. The use of configurable joints introduced physical constraints. The experimental method validated performance through seven statistical graphs generated using machine learning methods. The results demonstrated that the developed model allows skeleton monsters to move to their target points efficiently and with natural animation. This paper has implemented a method for creating game monster animations using machine learning, which can be applied in various gaming environments in the future. The year 2024 is expected to bring expanded innovation in the gaming industry. Currently, advancements in technology such as virtual reality, AI, and cloud computing are redefining the sector, providing new experiences and various opportunities. Innovative content optimized for this period is needed to offer new gaming experiences. A high level of interaction and realism, along with the immersion and fun it induces, must be established as the foundation for the environment in which these can be implemented. Recent advancements in AI technology are significantly impacting the gaming industry. By applying many elements necessary for game development, AI can efficiently optimize the game production environment. Through this research, We demonstrate that the application of machine learning to Unity and game engines in game development can contribute to creating more dynamic and realistic game environments. To ensure that VR gaming does not end as a mere craze, we propose new methods in this study to enhance realism and immersion, thereby increasing enjoyment for continuous user engagement.

Implementing of a Machine Learning-based College Dropout Prediction Model (머신러닝 기반 대학생 중도탈락 예측 모델 구현 방안)

  • Yoon-Jung Roh
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.119-126
    • /
    • 2024
  • This study aims to evaluate the feasibility of an early warning system for college dropout by machine learning the main patterns that affect college student dropout and to suggest ways to implement a system that can actively prevent it. For this purpose, a performance comparison experiment was conducted using five types of machine learning-based algorithms using data from the Korean Educational Longitudinal Study, 2005, conducted by the Korea Educational Development Institute. As a result of the experiment, the identification accuracy rate of students with the intention to drop out was up to 94.0% when using Random Forest, and the recall rate of students with the intention of dropping out was up to 77.0% when using Logistic Regression. It was measured. Lastly, based on the highest prediction model, we will provide counseling and management to students who are likely to drop out, and in particular, we will apply factors showing high importance by characteristic to the counseling method model. This study seeks to implement a model using IT technology to solve the career problems faced by college students, as dropout causes great costs to universities and individuals.

Analysis on the Positional Accuracy of the Non-orthogonal Two-pair kV Imaging Systems for Real-time Tumor Tracking Using XCAT (XCAT를 이용한 실시간 종양 위치 추적을 위한 비직교 스테레오 엑스선 영상시스템에서의 위치 추정 정확도 분석에 관한 연구)

  • Jeong, Hanseong;Kim, Youngju;Oh, Ohsung;Lee, Seho;Jeon, Hosang;Lee, Seung Wook
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.143-152
    • /
    • 2015
  • In this study, we aim to design the architecture of the kV imaging system for tumor tracking in the dual-head gantry system and analyze its accuracy by simulations. We established mathematical formulas and algorithms to track the tumor position with the two-pair kV imaging systems when they are in the non-orthogonal positions. The algorithms have been designed in the homogeneous coordinate framework and the position of the source and the detector coordinates are used to estimate the tumor position. 4D XCAT (4D extended cardiac-torso) software was used in the simulation to identify the influence of the angle between the two-pair kV imaging systems and the resolution of the detectors to the accuracy in the position estimation. A metal marker fiducial has been inserted in a numerical human phantom of XCAT and the kV projections were acquired at various angles and resolutions using CT projection software of the XCAT. As a result, a positional accuracy of less than about 1mm was achieved when the resolution of the detector is higher than 1.5 mm/pixel and the angle between the kV imaging systems is approximately between $90^{\circ}$ and $50^{\circ}$. When the resolution is lower than 1.5 mm/pixel, the positional errors were higher than 1mm and the error fluctuation by the angles was greater. The resolution of the detector was critical in the positional accuracy for the tumor tracking and determines the range for the acceptable angle range between the kV imaging systems. Also, we found that the positional accuracy analysis method using XCAT developed in this study is highly useful and will be a invaluable tool for further refined design of the kV imaging systems for tumor tracking systems.