• 제목/요약/키워드: softening curves

검색결과 73건 처리시간 0.021초

304 스테인리스강의 열간동적재결정과 미세조직 예측 (The Prediction of Dynamic Recrystallization and Grain Size of 304 Stainless Steel during Hot Deformation)

  • 권영표;조종래;이성열;이정환
    • 소성∙가공
    • /
    • 제10권7호
    • /
    • pp.573-578
    • /
    • 2001
  • The flow stress of 304 stainless steel during hot forming process were determined by conducting hot compression tests at the range of 1273 K∼1423 K and 0.05 /s∼2.0 /s as these are typical temperature and strain rate in hot forging operation. In this material, Dynamic recrystallization was found to be the major softening mechanism with this conditions as Previous studies. Based on the observed phenomena, a constitutive model of flow stress was assumed as a function of strain, strain rate, temperature. In the constitutive model, the effects of strain hardening and dynamic recrystallization were taken into consideration. A finite element method connected to constitutive model was performed to predict the dynamic recrystallization behaviors and also stress-strain curves in hot compression of 304 stainless steel.

  • PDF

보이드 성장을 고려한 재료의 성형한계에 대한 비 국소 해석 (Non-Local Analysis of Forming Limits of Ductile Material Considering Damage Growth)

  • 김영석;원성연
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.914-922
    • /
    • 2003
  • In this paper, the strain localization of voided ductile material has been analyzed by nonlocal plasticity formulation in which the yield strength not only depends on an equivalent plastic strain measure (hardening parameter), but also on the Laplacian thereof. The gradient terms in yield criterion show an important role on modeling strain-softening phenomena of material. The influence of the mesh size on the elastic -plastic deformation behavior and the effect of the characteristic length parameter for localization prediction are also investigated. The proposed nonlocal plasticity shows that the load -strain curves converge to one curve. Results using nonlocal plasticity also exhibit the dependence of mesh size is much less sensitivity than that for a corresponding local plasticity formulation.

기계적 합금화에 의한 $Ti_{25}Cr_8Al_{67}$ 합금의 합성 및 기계적 성질 (Synthesis and Mechanical Properties of $Ti_{25}Cr_8Al_{67}$ Alloy by Mechanical Alloying)

  • 이강률
    • 한국분말재료학회지
    • /
    • 제2권3호
    • /
    • pp.231-237
    • /
    • 1995
  • The powder mixtures of Al, Ti and Cr were mechanically alloyed to obtain nanocrystalline powders of $Ti_{25}Cr_8Al_{67}$ composition. Both FCC phase and undissolved metal chromium formed by MA. During the annealing of the MA powders, the phase transition from FCC to ordered $Ll_2$ started at ~$300^{\circ}C$ and was completed below $600^{\circ}C$. As a result of the high-temperature compressive test for the MA powder compacts, the stress-strain curves showed serrated yielding behavior at 400 and $600^{\circ}C$, and softening phenomenon below the strain rate of $5{\times}10^{-3}s^{-1}$ at $800^{\circ}C$. The compressive yield strength as a function of test temperatures showed the nature of the positive-temperature dependence which has the peak temperature around $600^{\circ}C$.

  • PDF

초고강도 콘크리트의 응력-병형률 모델 제안 (Proposed New Model for the Stress-Strain Relationship of Ultra High-Strength Concrete)

  • 박훈규;이정화;윤영수;장일영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.406-412
    • /
    • 1997
  • This paper presents the newly developed model for the stress-strain relationship of ultra high- strength concrete on the basis of the more refined statistical to analysis the various test results available in the literature to be more rigorous in accuracy and generalized scheme. Through the comprehensive analysis of the previously existing equations for each model, multiple curves equation has turned out to be most appropriate to simulate the linearly varying ascending branch and brittle type of descending one. The principal variables to model the stress-strain relationship such as the modulus of elasticity, ultimate strain and deformation characteristics due to stress softening phenomenon were extensively studied to be simplified in the function of the concrete compressive strength.

  • PDF

SP시험에 의한 TMCP강의 방향성 및 용접부의 파괴인성에 관한 연구 (A study on fracture toughness of welded joint and orientation in TMCP steel by th SP test)

  • 유효선;안병국;류대영;정세희
    • Journal of Welding and Joining
    • /
    • 제16권6호
    • /
    • pp.35-43
    • /
    • 1998
  • In this paper, the fracture toughness evaluation of the various microstructures such as HAZ, F.L and W.M in weldment of TMCP steel which has the softening zone owing to high heat input welding was carried out by using of the small punch(SP) test. In addition, the fracture toughness with the specimen orientation of rolled TMCP steel was investigated by means of SP test and the crack opening displacement (COD) test and then was compared with that of conventional SM50YB steel. From the results of SP test for TMCP steel, it could be seen that the SP energy transition curves of three different orientation were shifted to higher temperature side in order of S, T and L. But the {TEX}$DBTT_{SP}${/TEX} of each orientation specimen did not show a lot of differences and were quite lower than those of conventional SM50YB steel. The mechanical properties of HAZ structure in weldment of TMCP steel such as hardness, SP energy at room temperature and -196$^{\circ}C$ and the upper shelf energy of SP energy transition curve were lower than those of base metal due to softening. The {TEX}$DBTT_{SP}${/TEX} of each microstructure in weldment of TMCP steel increased in order of HAZ, F.L and W.M against base metal, but all microstructures showed a quite lower {TEX}$DBTT_{SP}${/TEX} than those of SM50YB steel.

  • PDF

순수(純粹)비틀림을 받는 철근(鐵筋)콘크리트 부재(部材)의 내력(耐力) (Strength of Reinforced Concrete Members in Pure Torsion)

  • 신현묵;김은겸;김선일
    • 대한토목학회논문집
    • /
    • 제8권2호
    • /
    • pp.125-133
    • /
    • 1988
  • RC 부재(部材)에 대한 정밀도 높은 하중이력곡선(荷重履歷曲線)의 제안은 합리적인 설계법(設計法)의 수립이라는 관점으로 볼 때 매우 중요하다. 순수비틀림을 받는 RC 부재(部材)의 비틀림모멘트와 비틀림각(角) 관계곡선을 최근 제안한 사람은 Collins, Hsu 등이다. 그러나 그의 비틀림 내력평가(耐力評價) 결과는 극한상태를 제외하고는 모든 하중영역(荷重領域)에 있어서 상당히 과소평가되고 있다. 본 연구에서는 구성방정식(構成方程式)에 콘크리트의 인장강성(引張剛性) 및 수정된 콘크리트 softening 계수(係數)를 도입하여 임의의 하중단계에서도 비틀림내력(耐力)의 정밀도를 높이는데 그 목적(目的)을 두었다. 특히 이론해석(理論解析)의 타당성을 검토하고자 14체(體)의 RC 부재(部材)를 제작하여 재하실험(載荷實驗)을 실시하였다.

  • PDF

Experimental dynamic performance of an Aluminium-MRE shallow shell

  • Zhang, Jiawei;Yildirim, Tanju;Neupane, Guru Prakash;Tao, Yuechuan;Bingnong, Jiang;Li, Weihua
    • Smart Structures and Systems
    • /
    • 제25권1호
    • /
    • pp.57-64
    • /
    • 2020
  • The nonlinear dynamics of a directly forced clamped-clamped-free-free magneto-rheological elastomer (MRE) sandwich shell has been experimentally investigated. Experiments have been conducted on an aluminium shallow shell (shell A) and an MRE-aluminium sandwich shallow shell with single curvature (shell B). An electrodynamic shaker has been used to directly force shells A and B in the vicinity of their fundamental resonance frequency; a laser displacement sensor has been used to measure the vibration amplitude to construct the frequency-response curves. It was observed that for an aluminium shell (shell A), that at small forcing amplitudes, a weak softening-type nonlinear behaviour was observed, however, at higher forcing amplitudes the nonlinear dynamical behaviour shifted and a strong hardening-type response occurred. For the MRE shell (shell B), the effect of forcing amplitude showed softening at low magnetic fields and hardening for medium magnetic fields; it was also observed the mono-curved MRE sandwich shell changed dynamics to quasiperiodic displacement at some frequencies, from a periodic displacement. The presence of a magnetic field, initial curvature, and forcing amplitude has significant qualitative and quantitative effects on the nonlinear dynamical response of a mono curved MRE sandwich shell.

고온 변형 곡선을 이용한 동적 재결정 해석과 동적 상변태의 조기 예측 (Precise Flow Stress Analysis for the Occurrence of Dynamic Ferritic Transformation and Dynamic Recrystallization of Austenite in Low Carbon Steel)

  • 박노근
    • 대한금속재료학회지
    • /
    • 제56권11호
    • /
    • pp.779-786
    • /
    • 2018
  • There have been previous attempts to observe the occurrence of dynamic ferritic transformation at temperatures even above $Ae_3$ in a low-carbon steel, and not only in steels, but recently also in titanium alloys. In this study, a new approach is proposed that involves treating true stress-true strain curves in uniaxial compression tests at various temperatures, and different strain rates in 0.1C-6Ni steel, which is a model alloy used to decelerate the kinetics of ferrite transformation from austenite. The initial flow stress up to peak stress was used to analyze the change in dynamic softening phenomena, such as dynamic recovery, dynamic recrystallization, and dynamic transformation. It is worth mentioning that for predicting the occurrence of dynamic transformation, flow stress before reaching peak stress is much more sensitive to the change in the dynamic softening rate due to dynamic transformation, compared to peak stress. It was found that the occurrence of dynamic ferritic transformation could be successfully obtained even at temperatures above $Ae_3$ once the deformation condition was satisfied. This deformation condition is a function of both the strain rate and the deformation temperature, which can be described as the Zener - Hollomon parameter. In addition, the driving force of dynamic ferritic transformation might be much less than that of the dynamic recrystallization of austenite at a given deformation condition. By applying this technique, it is possible to predict the occurrence of dynamic transformation more sensitively compared with the previous analysis method using peak stress during deformation.

고성능 하이브리드 섬유보강 콘크리트의 압축 및 인장 거동 (Compressive and Tensile Behaviors of High Performance Hybrid Fiber Reinforced Concrete)

  • 권순오;배수호;이현진
    • 한국건설순환자원학회논문집
    • /
    • 제8권4호
    • /
    • pp.458-466
    • /
    • 2020
  • 이 연구의 목적은 비정질 강섬유와 폴리아미드 섬유를 이용한 고성능 하이브리드 섬유보강 콘크리트의 압축 및 인장 거동을 평가하는 것이다. 이를 위하여 목표 압축강도 40MPa 및 60MPa 각각에 대해서 비정질 강섬유와 폴리아미드 섬유를 총 부피비로 1.0% 혼입한 고성능 하이브리드 섬유보강 콘크리트를 제작한 후 압축강도, 압축인성, 직접인장강도 및 응력-변형률 특징 등의 압축 및 인장 거동을 평가하였다. 그 결과, 고성능 하이브리드 섬유보강 콘크리트의 압축강도는 플레인 콘크리크보다 다소 감소하였으나, 압축인성, 압축인성 비, 직접인장강도는 크게 증가하는 것으로 나타났다. 또한 압축 및 인장 시험시 플레인 콘크리트는 최대응력 이후 취성파괴를 나타냈으나, HPHFRC는 변형연화 현상을 나타내어, 압축 및 인장 거동이 크게 개선되는 것으로 나타났다.

The crack propagation of fiber-reinforced self-compacting concrete containing micro-silica and nano-silica

  • Moosa Mazloom;Amirhosein Abna;Hossein Karimpour;Mohammad Akbari-Jamkarani
    • Advances in nano research
    • /
    • 제15권6호
    • /
    • pp.495-511
    • /
    • 2023
  • In this research, the impact of micro-silica, nano-silica, and polypropylene fibers on the fracture energy of self-compacting concrete was thoroughly examined. Enhancing the fracture energy is very important to increase the crack propagation resistance. The study focused on evaluating the self-compacting properties of the concrete through various tests, including J-ring, V-funnel, slump flow, and T50 tests. Additionally, the mechanical properties of the concrete, such as compressive and tensile strengths, modulus of elasticity, and fracture parameters were investigated on hardened specimens after 28 days. The results demonstrated that the incorporation of micro-silica and nano-silica not only decreased the rheological aspects of self-compacting concrete but also significantly enhanced its mechanical properties, particularly the compressive strength. On the other hand, the inclusion of polypropylene fibers had a positive impact on fracture parameters, tensile strength, and flexural strength of the specimens. Utilizing the response surface method, the relationship between micro-silica, nano-silica, and fibers was established. The optimal combination for achieving the highest compressive strength was found to be 5% micro-silica, 0.75% nano-silica, and 0.1% fibers. Furthermore, for obtaining the best mixture with superior tensile strength, flexural strength, modulus of elasticity, and fracture energy, the ideal proportion was determined as 5% micro-silica, 0.75% nano-silica, and 0.15% fibers. Compared to the control mixture, the aforementioned parameters showed significant improvements of 26.3%, 30.3%, 34.3%, and 34.3%, respectively. In order to accurately model the tensile cracking of concrete, the authors used softening curves derived from an inverse algorithm proposed by them. This method allowed for a precise and detailed analysis of the concrete under tensile stress. This study explores the effects of micro-silica, nano-silica, and polypropylene fibers on self-compacting concrete and shows their influences on the fracture energy and various mechanical properties of the concrete. The results offer valuable insights for optimizing the concrete mix to achieve desired strength and performance characteristics.