• Title/Summary/Keyword: soft soils

Search Result 321, Processing Time 0.02 seconds

Selection of the optimum mixture condition for stabilization of Songdo silty clay (송도 지역 해양성 점토 고화처리를 위한 최적배합 조건의 선정)

  • Kim, Jun-Young;Jang, Eui-Ryong;Chung, Choong-Ki;Lee, Yong-Jun;Jang, Soon-Ho;Choi, Jung-Yeul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.412-419
    • /
    • 2009
  • Large quantity of extra soils discharged from excavation site in Songdo area can be treated by hardening agents and utilized in surface stabilized layer overlying thick reclaimed soft soil deposit. Though surface layer stabilization method using cement or lime for very soft soils has been studied in recent years, but studies on moderately soft clayey silt has not been tried. The purpose of this research is to investigate optimum mixing condition for stabilizing Songdo marine soil with low plasiticity. The optimum mixing conditions of hardening agents with Songdo soil such as kind of agents, mixing ratio, initial water content and curing time are investigated by uniaxial compression test and laboratory vane test. The results indicate that strength increases with high mixing ratio and long curing time, while decreases drastically under certain water content before mixing. Finally, optimum mixing condition considering economic efficiency and workability with test results was proposed.

  • PDF

Stabilization of cement-soil utilizing microbially induced carbonate precipitation

  • Shuang Li;Ming Huang;Mingjuan Cui;Peng Lin;Liudi Xu;Kai Xu
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.95-108
    • /
    • 2023
  • Soft soil ground is a crucial factor limiting the development of the construction of transportation infrastructure in coastal areas. Soft soil is characterized by low strength, low permeability and high compressibility. However, the ordinary treatment method uses Portland cement to solidify the soft soil, which has low early strength and requires a long curing time. Microbially induced carbonate precipitation (MICP) is an emerging method to address geo-environmental problems associated with geotechnical materials. In this study, a method of bio-cementitious mortars consisting of MICP and cement was proposed to stabilize the soft soil. A series of laboratory tests were conducted on MICP-treated and cement-MICP-treated (C-MICP-treated) soft soils to improve mechanical properties. Microscale observations were also undertaken to reveal the underlying mechanism of cement-soil treated by MICP. The results showed that cohesion and internal friction angles of MICP-treated soft soil were greater than those of remolded soft soil. The UCS, elastic modulus and toughness of C-MICP-treated soft soil with high moisture content (50%, 60%, 70%, 80%) were improved compared to traditional cement-soil. A remarkable difference was observed that the MICP process mainly played a role in the early curing stage (i.e., within 14 days) while cement hydration continued during the whole process. Micro-characterization revealed that the calcium carbonate filling the pores enhanced the soft soil.

REPORT ON CONSOLIDATION-INDUCED SOLUTE TRANSPORT

  • Lee, Jang-Guen
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.140-145
    • /
    • 2010
  • Consolidation in cohesive soils mainly focuses on compressibility of soils, but it affects solute transport in some cases. The consolidation process takes on particular significance for fine grained soils at high water content, such as dredged sediments, but has also been shown to be important for compacted clay liners during waste filling operation. Numerical investigation using CST1 and CST2 was reviewed on consolidation-induced solute transport in this paper, especially with the development of CST2 model, verification by comparing experimental results with numerical simulations, and cases studies regarding transport in a confined disposal facility (CDF) and during in-situ capping. The importance of the consolidation process on solute transport is accessed based on simulated concentration or mass breakthrough curves. Results indicate that neglecting transient consolidation effects may lead to significant errors in transport analyses, especially with soft contaminated cohesive soils undergoing large volume change.

  • PDF

Numerical modelling of a pile-supported embankment using variable inertia piles

  • Dia, Daniel;Grippon, Jerome
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.245-253
    • /
    • 2017
  • The increasing lack of good quality soils allowing the development of roadway, motorway, or railway networks, as well as large scale industrial facilities, necessitates the use of reinforcement techniques. Their aim is the improvement of the global performance of compressible soils, both in terms of settlement reduction and increase of the load bearing capacity. Among the various available techniques, the improvement of soils by incorporating vertical stiff piles appears to be a particularly appropriate solution, since it is easy to implement and does not require any substitution of significant soft soil volumes. The technique consists in driving a group of regularly spaced piles through a soft soil layer down to an underlying competent substratum. The surface load being thus transferred to this substratum by means of those reinforcing piles, which illustrates the case of a piled embankment. The differential settlements at the base of the embankment between the soft soil and the stiff piles lead to an "arching effect" in the embankment due to shearing mechanisms. This effect, which can be accentuated by the use of large pile caps, allows partial load transfer onto the pile, as well as surface settlement reduction, thus ensuring that the surface structure works properly. A technique for producing rigid piles has been developed to achieve in a single operation a rigid circular pile associated with a cone shaped head reversed on the place of a rigid circular pile. This technique has been used with success in a pile-supported road near Bourgoin-Jallieu (France). In this article, a numerical study based on this real case is proposed to highlight the functioning mode of this new technique in the case of industrial slabs.

Fast Consolidation Test Using Seepage Forces : Method and Validation (침투압을 이용한 급속압밀시험 : 방법 및 검증)

  • Lee, Kang-Il;Kim, Tae-Hyung;Znidarcic, Dobroslav
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.31-38
    • /
    • 2009
  • A continuous, fast, and convenient experimental method, replacing recent tests such as standard oedometer or self weight consolidation test, is needed for the determination of the consolidation behavior of unformed soft soils. This study introduced the seepage induced fast consolidation test using the flow pump technique. It can obtain the consolidation characteristics of unformed soft soils conveniently and fast. The seepage induced consolidation test apparatus consists of a modified triaxial cell, differential pressure transducer, flow pump, and displacement transducer. The test continuously proceeds with starting seepage forces induced consolidation, loading consolidation, and permeability test on the same sample. In addition, this test result was compared with the standard oedometer test result to make this method valid. From this study it was found that this method is a convenient and time saving effective method for obtaining data required for calculation of consolidation settlement of unformed soft soils.

An Analysis of Pile Foundation Load Transfer for Lightweight Pavement System in Clay Soil using Lab Chamber Test (모형챔버시험을 이용한 점성토 지반에 설치된 경량포장체용 기초의 하중전달 특성)

  • Lee, Kwan-Ho;Shin, Kwang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.545-550
    • /
    • 2016
  • The main purpose of this study is to analyze and evaluate the feasibility of ligthweight pavement system with pile foundation on soft soil by laboratory small chamber test. In order to verify the stability of lightweight pavement system, the 1/30 scaled downed model system was tested at lab. The soft soil condition was simulated and group piles for skin friction resistance were used. Within the limited lab test, the settlements of pavement system were 0.86 mm for Case A, 0.70 mm for Case B, and 0.50 mm for Case C. The converted maximum settlement differential settlement were 25.8 mm and 10.8 mm. These values meet the inside of specification of Bridge Design Guide in Korea. The use of lightweight pavement systems on soft soils could be an alternative construction method on soft soils to reduce the challenges of conventional design and constructions.

Passive Force Acting on the Kicker Block Used to Support a Raker in Soft and Weathered Soil (연약지반과 풍화토지반에서 경사고임대 지지블록의 수동토압 산정)

  • Kim, Tae Hyung;Park, Lee Keun;Kim, Tae O;Jin, Hyun Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.801-813
    • /
    • 2017
  • Passive force acting on the kicker block used to support a raker is different dependent on soil's type. The passive force incorporating a factor of safety is considered for design of the retaining wall. However, an actual passive force developing on the kicker block is overestimated and it may lead to an unsafe design. In this study, the actual passive forces acting on the kicker block in soil ground are evaluated using 3-D Finite Element Program, PLAXIS. Soft and weathered soils are selected as a soil ground. The relation curves between horizontal displacement and actual passive force of the kicker block for each soil ground are obtained through numerical analyses. From the curves, the actual passive forces are determined as a yielding point, which are about 55.5% and 66% of Rankine's passive forces in soft and weathered soils, respectively.

TUNNELLING IN SOFT GROUND IN URBAN AREAS

  • Fujita, Keiichi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1990.10a
    • /
    • pp.9-24
    • /
    • 1990
  • Most tunnels in soft soils in urban areas are constructed by shield tunnelling method for environmental reasons. Ground surface settlements are caused by shield tunnelling so that auxiliary measures are often required. Simple methods to predict ground surface settlement are given. The use of the slurry or the earth pressure balance shield machine and the application of new methods of grouting with computer aided operation control systems decreases the ground surface settlement to 3 mm. The construction cost of tunnels is almost identical whichever type of shield machine is employed according to a statistical investigation.

  • PDF