• Title/Summary/Keyword: soft soil improvement

Search Result 200, Processing Time 0.027 seconds

Characteristics of Unconfined Compressive Strength of Dredged Clay Mixed with Friendly Soil Hardening Agent (준설토와 친토양 경화재 혼합지반의 일축강도특성)

  • Oh, Sewook;Yeon, Yonghum;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.73-81
    • /
    • 2016
  • In the construction on low strength and high compressible soft ground, the many problems have been occurred in recent construction project. therefore, the soil improvement have been developed to obtain high strength in relatively short period of curing time. Based on the laboratory tests using undisturbed marine clay, the effect of improvement on soft ground was estimated. Deep mixing method by cement have been virtually used for decades to improve the mechanical properties of soft ground. However, previous researches set the focus on the short term strength the about 10% of cement treated clay. In this paper, cement and Natural Soil Stabilizer (NSS) were used as the stabilizing agent to obtain trafficability and mechanical strength of the soft clay. Based on the several laboratory tests, optimum condition was proposed to ensure the mechanical strength and compressibility as the foundation soil using cement and NSS mixed soil. Finally, research data was proposed about the applicability of NSS as the stabilizing agent to soft clay to increase the mechanical strength of soil.

A computational estimation model for the subgrade reaction modulus of soil improved with DCM columns

  • Dehghanbanadaki, Ali;Rashid, Ahmad Safuan A.;Ahmad, Kamarudin;Yunus, Nor Zurairahetty Mohd;Said, Khairun Nissa Mat
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.385-396
    • /
    • 2022
  • The accurate determination of the subgrade reaction modulus (Ks) of soil is an important factor for geotechnical engineers. This study estimated the Ks of soft soil improved with floating deep cement mixing (DCM) columns. A novel prediction model was developed that emphasizes the accuracy of identifying the most significant parameters of Ks. Several multi-layer perceptron (MLP) models that were trained using the Levenberg Marquardt (LM) backpropagation method were developed to estimate Ks. The models were trained using a reliable database containing the results of 36 physical modelling tests. The input parameters were the undrained shear strength of the DCM columns, undrained shear strength of soft soil, area improvement ratio and length-to-diameter ratio of the DCM columns. Grey wolf optimization (GWO) was coupled with the MLPs to improve the performance indices of the MLPs. Sensitivity tests were carried out to determine the importance of the input parameters for prediction of Ks. The results showed that both the MLP-LM and MLP-GWO methods showed high ability to predict Ks. However, it was shown that MLP-GWO (R = 0.9917, MSE = 0.28 (MN/m2/m)) performed better than MLP-LM (R =0.9126, MSE =6.1916 (MN/m2/m)). This proves the greater reliability of the proposed hybrid model of MLP-GWO in approximating the subgrade reaction modulus of soft soil improved with floating DCM columns. The results revealed that the undrained shear strength of the soil was the most effective factor for estimation of Ks.

A study on soft soil improvement method of Seoul-Busan high-speed railway 6-2nd construction (경부고속철도 제6-2공구 노반신설 공사 중 치환공법을 통한 연약지반 처리연구)

  • Jung, Jae-Min;Im, Chang-Bin;Choi, Sang-Hen;Lee, Gwang-Jae
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1764-1773
    • /
    • 2011
  • This study is about how to handle very soft grounds consisted of coal and household garbage(organic soil), clay, silt and so on, through examining Seoul-Busan High-Speed railway 6-2nd section. The soft soil might induce long term settlement and lead to structure's differential settlement eventually. So, we performed the boring test for characteristic of railway ground, laboratory test and field survey for mechanical property. And we also collected the engineering data of ground and the data for the establishment arrangement. These data were examined thoroughly considering residual settlement and strength by high-speed railway design standard. As a result of this study, we can say high-speed railway ground must have enough bearing capacity and be settled under allowable residual settlement(10cm). And also it needs to replace soft ground with high quality sand for the fundamental solution. With the application of replacement method on this study, we expect enough condition to construct stable high-speed railway.

  • PDF

A Study on the Relaxion of Secondary Compression Settlement using Preloading Method (프리로딩에 의한 2차 압밀침하량 감소에 관한 연구)

  • Huh, Ik-Chang;Im, Jong-Chul;Chang, Ji-Gun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1086-1093
    • /
    • 2005
  • In soft ground, consolidation settlement is mainly consider. The primary consolidation settlement which is the time when the excess pore water pressure is completely dispersed and the secondary consolidation settlement which follows. Recently as the depth of consolidation layer increases the consideration of not only the primary consolidation settlement but also of the secondary consolidation settlement becomes a very important element. But up to the present there were only a few in-depth study of the secondary consolidation settlement performed. At present there are a lot of methods available when it comes to the improvement of soft soil. In this study, Preloading Method which is the most commonly used soft soil improvement method locally was used in order to investigate the method for the reduction of secondary consolidation settlement. The objective of this study is to determine the amount of preloading required to reduce secondary consolidation settlement and to determine whether secondary consolidation settlement using standard consolidation test.

  • PDF

Numerical Analysis on the Effect of Increasing Stiffness of Geosynthetics on Soil Displacement and Pile Efficiency in Piled Embankment on Soft Soil (성토지지말뚝구조에서 토목섬유 인장강성 증가에 따른 변위 억제 및 말뚝효율 증가량에 대한 수치해석적 분석)

  • Lee, Taehee;Lee, Su-Hyung;Lee, Il-Wha;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.31-43
    • /
    • 2015
  • A numerical analysis on the effect of increasing tensile stiffness of the geosynthetics on the soil displacement and pile efficiency was conducted. Parametric studies by changing the stiffness of soft soil, internal friction and dilatancy angles of the embankment material, and flexual stiffness of the composite layer including the geosynthetics were carried out. In general, increasing stiffness of the geosynthetics improves the pile efficiency, whereas the amount of its improvement depends on the condition of parameters. In case of the sufficiently low stiffness of the soft soil or high flexual stiffness of the composite layer including the geosynthetics, a noticeable increase in the pile efficiency can be observed. When the stiffness of the soft soil is very low, the increase in the stiffness of the geosynthetics can significantly reduce the vertical displacement in the piled embankment. When the flexual stiffness of the composite layer is sufficiently high, increasing stiffness of the geosynthetics can greatly improve the pile efficiency.

Evaluation of Lateral Flow in Soft Ground under Embankment (성토하부 연약지반의 측방유동 평가)

  • Hong, Won-Pyo;Cho, Sam-Deok;Lee, Jae-Ho;Lee, Kwang-Wu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.93-100
    • /
    • 2006
  • The lateral soil movement in soft grounds undergoing improvement with application of vertical drains is analyzed on the basis of monitoring data at three fields, in which fifty six monitoring sites are located. Based on the investigations, the criterions are suggested to predict the lateral soil movement. In order to predict the lateral soil movement in the improved soft grounds by using the dimensionless parameter R suggested by Marche & Chapuis (1974), it is desirable that the maximum lateral displacement in the soft ground below the toe of embankment should be applied to calculate R instead of the lateral displacement at the toe of embankment. The lateral soil movement may increase rapidly, if the safety factor of slope is less than 1.4 in case of high ratio of H/B (Thickness of soft ground/Embankment width) such as 1.15 or is less than 1.2 in case of low ratio of H/B such as 0.05. Also, the graph suggested by Tschebotarioff (1973), which illustrates the relationship between the maximum height of embankments and the undrained shear strength of soft grounds, can be applied to the evaluation for the possibility of the lateral soil movement due to embankments on soft grounds.

A Study on Effect of Ground Improvement by Sand Compaction Pile Changing Replacement Width (모래다짐말뚝 개량폭에 따른 보강효과에 관한 연구)

  • Kim, Si-Woon;Jung, Gil-Soo;Park, Byung-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.67-73
    • /
    • 2005
  • In this research, centrifuge model experiments and numerical approach of finite element method to analyze experimental results were performed to investigate the behavior of improved ground with sand compaction piles. One of typical clay minerals, kaolinite powder, were prepared for soft ground in model tests. Jumunjin standard sand was used to sand compaction pile installed in the soft soil. In order to investigate the characteristics of mechanical behavior of sand compaction piles with low replacement ratios, centrifuge model experiments with the replacement ratio of 40%, changing the width of improved area with respect to testing results the width of surcharge loads, were carried out to obtain of bearing capacity, characteristics of load-settlement, vertical stresses acting on the sand pile and the soft soil failure mechanism in improved ground.

  • PDF

Numerical modelling of a pile-supported embankment using variable inertia piles

  • Dia, Daniel;Grippon, Jerome
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.245-253
    • /
    • 2017
  • The increasing lack of good quality soils allowing the development of roadway, motorway, or railway networks, as well as large scale industrial facilities, necessitates the use of reinforcement techniques. Their aim is the improvement of the global performance of compressible soils, both in terms of settlement reduction and increase of the load bearing capacity. Among the various available techniques, the improvement of soils by incorporating vertical stiff piles appears to be a particularly appropriate solution, since it is easy to implement and does not require any substitution of significant soft soil volumes. The technique consists in driving a group of regularly spaced piles through a soft soil layer down to an underlying competent substratum. The surface load being thus transferred to this substratum by means of those reinforcing piles, which illustrates the case of a piled embankment. The differential settlements at the base of the embankment between the soft soil and the stiff piles lead to an "arching effect" in the embankment due to shearing mechanisms. This effect, which can be accentuated by the use of large pile caps, allows partial load transfer onto the pile, as well as surface settlement reduction, thus ensuring that the surface structure works properly. A technique for producing rigid piles has been developed to achieve in a single operation a rigid circular pile associated with a cone shaped head reversed on the place of a rigid circular pile. This technique has been used with success in a pile-supported road near Bourgoin-Jallieu (France). In this article, a numerical study based on this real case is proposed to highlight the functioning mode of this new technique in the case of industrial slabs.

A Study on the Application of Soilcrete Cement for Improvement of marine Clay (해성점토지반 개량을 위한 소일크리트 고화재의 적용성에 관한 연구)

  • 천병식;김진춘
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.72-77
    • /
    • 2000
  • In this paper, the effect of ground improvement and the countermeasure for the increase of strength in soft ground (wasted fill, marine clay) was studied through utilization of Soilcrete Cement as a material of ground improvement. Soil samples were obtained from $\bigcirc$$\bigcirc$$\bigcirc$ sanitary landfill to assess the applicability of the clay liner using Soilcrete Cement. Several laboratory tests were performed with the samples and skin corrosion tests of steel pipe covered with Soilcrete Cement were performed. As a result, Soilcrete Cement is considered to be applicable to the construction site and to be effective for the prevention of the corrosion of the steel pipe.

  • PDF

A Study on Improvement of Road Compaction Method in Soft Ground (연약지반 상 노상다짐 방법 개선에 대한 연구)

  • Choi, Hyeonsuk;Jang, Hohun
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.427-437
    • /
    • 2019
  • The purpose of this study is to improve construction cost, time, and field management when constructing a road on soft soil foundation by eliminating extra-banking of subgrade layer after completion of the consolidation process. The subgrade layer was pre-constructed before the soft ground improvement. And then it was confirmed by the field test that the compaction effect was maintained or not after consolidation settlement. As a result of the experiment, all subgrade layers were kept constant except for the top subgrade layer. So it would be advantageous to secure economical and practical in road construction if subgrade layers were constructed exclusive of the top subgrade layer.