• Title/Summary/Keyword: soft film

Search Result 299, Processing Time 0.033 seconds

Degradation of Soft Magnetic Properties of Fe-Hf-N/Cr/SiO2 Thin Films Reacted with Bonding Glass (접합유리와 반응된 Fe-Hf-N/Cr/SiO2 박막의 연자기 특성 열화)

  • Je Hae-June;Kim Byung-Kook
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.780-785
    • /
    • 2004
  • The degradation mechanism of soft magnetic properties of $Fe-Hf-N/Cr/SiO_2$ thin films reacted with a bonding glass was investigated. When $Fe-Hf-N/Cr/SiO_2$ films were annealed under $600^{\circ}C$ without the bonding glass, the compositions and the soft magnetic properties of Fe-Hf-N layers were not changed. However, after reaction with the bonding glass at $550^{\circ}C$, the soft magnetic properties of the film were degraded. At $600^{\circ}C$, the saturation magnetization of the reacted film decreased to 13.5 kG, and its coercivity increased to 4 Oe, and its effective permeability decreased to 700. It was founded that O diffused from the glass into the Fe-Hf-N layers during the reaction and generated $HfO_2$ phases. It was considered that the soft magnetic properties of the $Fe-Hf-N/Cr/SiO_2$ films reacted with the bonding glass were primarily degraded by the formation of the Fe-Hf-O-N layer of which the Fe content was below 60 $at\%$, and secondarily degraded by the Fe-Hf-O-N layer above 70 $at\%$.

Effect of Isotropic Strain on Properties of Amorphous Magnetic films (아몰퍼스자성박막의 특성에 미치는 등방성 스트레인의 영향)

  • 신광호;김흥근;김영학;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.478-480
    • /
    • 2001
  • Fe-base amorphous films exhibit large saturation magnetostriction and soft magnetic Properties, which make them suitable for strain sensor applications. Most important material properties for the performance of these elements are the superior soft magnetic properties, such as high permeability and small coercive force, as well as magnetoelastic properties. It is well known that the strain generated in film deposition and/or post-heat treatment processes is one of important material properties, which effects on the soft magnetic properties of the film via magnetoelastic coupling. In this study, the effect of an isotropic strain in plane of magnetic films have been performed experimently. Amorphous films with the composition of (F $e_{90}$ $Co_{10}$)$_{78}$S $i_{l2}$ $B_{10}$ were employed in this study. The film with 5${\mu}{\textrm}{m}$ thick was deposed onto the polyimide substrate with 50${\mu}{\textrm}{m}$ thick by virtue of RF sputtering. The film was subject to post annealing with a static magnetic field with 500Oe magnetic field intensity at 35$0^{\circ}C$ for 1 hour. The polyimide substrate with the film was bonded with an adhesive on PZT piezoelectric substrate with 600${\mu}{\textrm}{m}$ thick in applying voltage of 500V. The change in MH loops of films due to the isotropic strain was measured by using VSM. The coercive force was evaluated from MH loops. It has shown in the results that M-H loops of films are subject to change considerably with a dc voltage, resulting of the magnetization rotation from normal to plane direction as the applied voltage is changed from 500V to 250V.50V.V.

  • PDF

Development of Automatic Fault Detection System for Chip-On-Film (칩 온 필름을 위한 자동 결함 검출 시스템 개발)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.313-318
    • /
    • 2012
  • This paper presents an automatic system to detect variety of faults from fine pitch COF(chip-on-film) which is less than $30{\mu}m$. Developed system contains circuits and technique to detect fast various faults such as hard open, hard short, soft open and soft short from fine pattern. Basic principle for fault detection is to monitor fine differential voltage from pattern resistance differences between fault-free and faulty cases. The technique uses also radio frequency resonator arrays for easy detection to amplify fine differential voltage. We anticipate that proposed system is to be an alternative for conventional COF test systems since it can fast and accurately detect variety of faults from fine pattern COF test process.

Excellent Magnetic Properties of Co53FE22Hf10O15 Thin Films

  • Tho, L.V.;Lee, K.E.;Kim, C.G.;Kim, C.G.;Cho, W.S.
    • Journal of Magnetics
    • /
    • v.11 no.4
    • /
    • pp.167-169
    • /
    • 2006
  • Nanocrystalline CoFeHfO thin films have been fabricated by RF sputtering method. It is shown that the CoFeHfO thin films possess not only high electrical resistivity but also large saturation magnetization and anisotropy field. Among the composition investigated, $Co_{53}FE_{22}Hf_{10}O_{15}$ thin film is observed to exhibit good soft magnetic properties: coercivity ($H_{c}$) of 0.18 Oe; anisotropy fild ($H_{k}$) of 49.92 Oe; saturation magnetization ($4{\Pi}M_{s}$) of 15.5 kG. The frequency response of permeability of the film is excellent. The excellent magnetic properties of this film in addition of an extremely high electrical resistivity (r) of $185\;{\mu}cm$ make it ideal for uses in high-frequency applications of micromagnetic devices. It is the formation of a peculiar microstructure that resulted in the superior properties of this film.

Soft Magnetoresistive Properties of Conetic Thin Film Depending on Ta Buffer Layer (버퍼층 Ta에 의존하는 코네틱 박막의 연자성 자기저항 특성)

  • Choi, Jong-Gu;Hwang, Do-Guwn;Lee, Sang-Suk;Choi, Jin-Hyub;Lee, Ky-Am;Rhee, Jang-Rho
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.6
    • /
    • pp.197-202
    • /
    • 2009
  • The property of soft magnetism for the Corning glass/non-buffer or buffer Ta/Conetic(NiFeCuMo)/Ta prepared by the ion beam deposition sputtering was studied. The effect of crystal property and post annealing treatment depending on the thickness of Conetic thin films was investigated. The coercivities of Conetic thin films with easy and hard direction along to the applying magnetic field during deposition were compared with each other. The coercivity and magnetic susceptibility of Ta(5 nm)/Conetic(50 nm) thin film were 0.12 Oe and 1.2 ${\times}\;10^4$, respectively. From these results, firstly, the Conetic thin film was more soft magnetism thin film than other one such as permalloy NiFe. Secondly, the usage of soft magnetism Conetic thin film for GMR-SV (giant magneoresistance-spin valve) or MTJ (Megnetic Tunnel Junction) structure in a low magnetic field can be possible.

Influence of Cultivation Condition and Harvest Time on the Storage Stability of Fresh Ginseng Individually Packaged in a Soft Film (재배조건 및 채굴시기가 연포장재 필름으로 개별포장한 수삼의 저장성에 미치는 영향)

  • 손현주;김은희;성현순
    • Journal of Ginseng Research
    • /
    • v.25 no.2
    • /
    • pp.94-100
    • /
    • 2001
  • The influence of cultivation condition and harvest time on the storage stability of the fresh ginseng (50g) individually packaged in a soft film bag (ONY/LDPE/L-LDPE; 200$\times$300 mm, 90㎛) was investigated. When the fresh ginsengs were divided into four groups of direct-planted ginseng on the paddy soil(PD), transplanted ginseng on the upland(UT) and each group was stored at 25$\^{C}$ for 40 days, the quality deterioration rate was the highest in PD group while PT, UD and UT groups exhibited similar quality patterns from each other. When each group was stored at 10$\^{C}$, the quality deterioration rate was also the highest in PD group and the other three groups exhibited similar quality patterns from each other till 90 days passed after storage. However, the quality deterioration rate of UT group was 54% which was higher than UD group or PT group 180 days after storage. When the fresh ginseng harvested between September of 1997 and October of 1998 was individually packaged with the soft film and stored at 25$\^{C}$ for 12 days, the quality deterioration rate was the lowest in the group harvested in October while relatively high in the groups harvested between July and September.

  • PDF

Efficient Approach to Measure Crystallization Temperature in Amorphous Thin Film by Infrared Reflectivity

  • Wang, Wenxiu;Saito, Shin;Yakabe, Hidetaka;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.86-89
    • /
    • 2013
  • This paper shows a new effective approach to measure crystallization temperature of soft magnetic underlayer (SUL) for next generation of heat assisted perpendicular recording media. This approach uses temperature dependent reflectivity, which shows a clear jump when samples are crystallized. To achieve this measurement, an optical system is set up using hot plate and infrared laser. Reflectivity of SUL $(Co_{70}Fe_{30})_{92}Ta_3Zr_5$ shows a clear jump at its amorphous-crystalline transition temperature. Experiment results show this effect is clear in infrared region, and is weak for visible light.

Circularly polarized soft X-ray generation by Co/Pt thin film polarizer with perpendicular magnetic anisotropy

  • Lee, Sang-Hyuk;Huang, Lin;Lee, Jae-Woong;Kim, Namdong;Shin, Hyun-Joon;Jeong, Jong-Ryul;Hwang, Chanyong;Kim, Dong-Hyun
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1196-1200
    • /
    • 2018
  • We have experimentally demonstrated circular polarization generation from linear polarized soft X-ray at synchrotron by adopting a thin magnetic film polarizer. Polarizer is composed of Co/Pt multilayer with a perpendicular magnetic anisotropy, which allows us to easily accommodate without needing any tilting angle into the measurement setup since the circular polarization is generated for the X-ray with normal incidence and transmission. Generated circular polarization is examined by observing magnetic domain features based on the X-ray magnetic circular dichroism, where~11% of circular component is estimated compared to the case of full circular polarization.

The Difference of Tear Break-Up Time by the Fitting States of Soft Contact Lens in Normal and Dry Eyes (정상안과 건성안에서 소프트렌즈 피팅 상태에 따른 비침입성 눈물막 파괴 시간의 차이)

  • Jung, Da I;Lee, Heum Sook;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.4
    • /
    • pp.339-346
    • /
    • 2010
  • Purpose: The study was performed to compare the difference of non-invasive tear break-up time (NIBUT) with alignment or steep fitting of soft contact lens in normal and dry eyes. Methods: Total 40 eyes (aged 20~30 years) were classified to the normal (n=20) or dry eye group (n=20) by the diagnosis methods for dry eyes and worn soft contact lens (polymacon material) with alignment or steep fitting. NIBUTs of lens wearers were separately measured at the points of before wearing, immediately after wearing and after stabilization of tear film. Results: With alignment fitting, averaged NIBUT in the dry eye group after stabilization of tear film was not significantly different from that of the normal eye group. However, averaged NIBUTs in the normal and dry eyes had significant difference when measured immediately after lens wearing. However, the number of eyes having NIBUT less than 4.0 second was 30% higher compared to the number of normal eyes with steep fitting when measured immediately after wearing. Some shorten NIBUT in dry eyes with steep fitting was also shown after stabilization of tear film. Conclusions: These results suggest that wearing soft contact lens in dry eyes differently affect tear film compared to normal eyes. Thus, dry eyes need more advertent fitting for contact lens wearing because of unstable tear film.

Soft Mold Imprinting Fabrication of Anti-reflection Film using Self-Organized Nanostructure Polymer Surfaces Irradiated by Ion Beams (이온빔 처리된 폴리머 표면의 자가나노구조화를 이용한 반사방지 필름 제조용 소프트 몰드 임프린팅 연구)

  • Lee, Seunghun;Byeon, Eun-Yeon;Choi, Juyeon;Jung, Sunghoon;Yu, Byeong-Gil;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.480-485
    • /
    • 2017
  • Soft mold imprinting method that uses nanostructured polymer mold was investigated for anti-reflection film fabrication. The nanostructured soft mold was polyethylene terephthalate(PET) irradiated by oxygen ion beams. The collisional energy transfer between oxygen ion and the polymer surface induced cross-linking and scission reactions, resulting in self-organized nanostructures with regular patterns of the wavenumber of $5{\mu}m^{-1}$. Post processes including ultra-violet curable resin coating and delamination fabricated anti-reflection films. The imprinted resin surface also showed the consistent wavenumber, $5{\mu}m^{-1}$. Pristine PET, oxygen ion beam treated PET, and imprinted replica sample showed total transmittance of 91.04, 93.25, and 93.57-93.88%, respectively.