DOI QR코드

DOI QR Code

Circularly polarized soft X-ray generation by Co/Pt thin film polarizer with perpendicular magnetic anisotropy

  • Lee, Sang-Hyuk (Department of Physics, Chungbuk National University) ;
  • Huang, Lin (Department of Physics, Chungbuk National University) ;
  • Lee, Jae-Woong (Department of Materials Science, Chungnam National University) ;
  • Kim, Namdong (Pohang Accelerator Laboratory) ;
  • Shin, Hyun-Joon (Pohang Accelerator Laboratory) ;
  • Jeong, Jong-Ryul (Department of Materials Science, Chungnam National University) ;
  • Hwang, Chanyong (Center for Nanometrology, Korea Research Institute of Standards and Science) ;
  • Kim, Dong-Hyun (Department of Physics, Chungbuk National University)
  • Received : 2018.03.23
  • Accepted : 2018.05.03
  • Published : 2018.11.30

Abstract

We have experimentally demonstrated circular polarization generation from linear polarized soft X-ray at synchrotron by adopting a thin magnetic film polarizer. Polarizer is composed of Co/Pt multilayer with a perpendicular magnetic anisotropy, which allows us to easily accommodate without needing any tilting angle into the measurement setup since the circular polarization is generated for the X-ray with normal incidence and transmission. Generated circular polarization is examined by observing magnetic domain features based on the X-ray magnetic circular dichroism, where~11% of circular component is estimated compared to the case of full circular polarization.

Keywords

Acknowledgement

Supported by : NRF

References

  1. K.J. Gaffney, H.N. Chapman, Science 316 (2007) 1444. https://doi.org/10.1126/science.1135923
  2. M.J. Bogan, W.H. Benner, S. Boutet, U. Rohner, M. Frank, A. Barty, M.M. Seibert, F. Maia, S. Marchesini, S. Bajt, B. Woods, V. Riot, S.P. Hau-Riege, M. Svenda, E. Marklund, E. Spiller, J. Hajdu, H.N. Chapman, Nano Lett. 8 (2008) 310. https://doi.org/10.1021/nl072728k
  3. K. Holldack, J. Bahrdt, A. Balzer, U. Bovensiepen, M. Brzhezinskaya, A. Erko, A. Eschenlohr, R. Follath, A. Firsov, W. Frentrup, L.L. Guyader, T. Kachel, P. Kuske, R. Mitzner, R. Mueller, N. Pontius, T. Quast, I. Radu, J.-S. Schmidt, C. Schuebler- Langeheine, M. Sperling, C. Stamm, C. Trabantd, A. Foehlisch, J. Synchrotron Radiat. 21 (2014) 1090. https://doi.org/10.1107/S1600577514012247
  4. J. Stohr, J. Magn. Magn. Mater. 200 (1999) 470. https://doi.org/10.1016/S0304-8853(99)00407-2
  5. P. Fischer, G. Schutz, G. Schmahl, P. Guttmann, D. Raasch, Z. Phys. B 101 (1996) 313.
  6. C.T. Chen, F. Sette, Y. Ma, S. Modesti, Rapid Commun. 42 (1990) 7262.
  7. R. Nakajima, Stohr, Y.U. Idzerda, Phys. Rev. B 59 (1999) 6421. https://doi.org/10.1103/PhysRevB.59.6421
  8. E. Beaurepaire, J.-C. Merle, A. Daunois, J.-Y. Bigot, Phys. Rev. Lett. 76 (1996) 4250. https://doi.org/10.1103/PhysRevLett.76.4250
  9. B. Koopmans, M. van Kampen, J.T. Kohlhepp, W.J.M. de Jonge, Phys. Rev. Lett. 85 (2000) 844. https://doi.org/10.1103/PhysRevLett.85.844
  10. B. Pfau, C.M. Gunther, R. Konnecke, E. Guehrs, O. Hellwig, W.F. Schlotter, S. Eisebitt, Optic Express 18 (2010) 13608. https://doi.org/10.1364/OE.18.013608
  11. G.L. Dakovski, P. Heimann, M. Holmes, O. Krupin, M.P. Minitti, A. Mitra, S. Moeller, M. Rowen, W.F. Schlottera, J.J. Turnera, J. Synchrotron Radiat. 22 (2015) 498. https://doi.org/10.1107/S160057751500301X
  12. J.B. Kortright, S.-K. Kim, T. Warwick, N.V. Smith, Appl. Phys. Lett. 71 (1997) 1446. https://doi.org/10.1063/1.119932
  13. H.-Ch. Mertins, F. Schafers, X. Le Cann, A. Gaupp, W. Gudat, Phys. Rev. B 61 (2000) R874. https://doi.org/10.1103/PhysRevB.61.R874
  14. H.-Ch. Mertins, S. Valencia, D. Abramsohn, A. Gaupp, W. Gudat, P.M. Oppeneer, Phys. Rev. B 69 (2004) 064407. https://doi.org/10.1103/PhysRevB.69.064407
  15. S. Eisebitt, J. Luning, W.F. Schlotter, M. Lorgen, O. Hellwig, W. Eberhardt, J. Stohr, Nature 432 (2004) 885. https://doi.org/10.1038/nature03139
  16. S. Eisebitt, M. Lorgen, W. Eberhardt, J. Luning, J. Stohr, C.T. Rettner, O. Hellwig, E.E. Fullerton, G. Denbeaux, Phys. Rev. B 68 (2003) 1044119.
  17. S. Wittekoek, T.J.A. Poprna, J.M. Robertson, P.F. Bongers, Phys. Rev. B 12 (1975) 2777. https://doi.org/10.1103/PhysRevB.12.2777
  18. W.B. Zeper, F.J.A.M. Greidanus, P.F. Carcia, C.R. Fincher, J. Appl. Phys. 65 (1989) 4971. https://doi.org/10.1063/1.343189
  19. S. Uba, L. Uba, A.N. Yaresko, A. Ya. Perlov, V.N. Antonov, R. Gontarz, Phys. Rev. B 53 (1996) 6526. https://doi.org/10.1103/PhysRevB.53.6526
  20. D.-T. Quach, D.-H. Kim, IEEE Trans. Magn. 50 (2014) 6500504.
  21. D. Handoko, D.-T. Quach, S.-H. Lee, K.M. Lee, J.-R. Jeong, D.S. Yang, D.-H. Kim, IEEE Trans. Magn. 52 (2016) 6100105.
  22. D. Handoko, D.-T. Quach, S.-H. Lee, J.-H. Shim, D.-H. Kim, K.-M. Lee, J.-R. Jeong, N. Kim, H.-J. Shin, J. Kor. Phys. Soc. 66 (2015) 1732. https://doi.org/10.3938/jkps.66.1732
  23. D.-T. Ngo, D.-T. Quach, Q.-H. Tran, K. Mohave, T.-L. Phan, D.-H. Kim, J. Phys. D 47 (2014) 445001. https://doi.org/10.1088/0022-3727/47/44/445001
  24. N.W.E. McGee, M.T. Johnson, J.J. de Vries, J. aan de Stegge, J. Appl. Phys. 73 (1993) 3418. https://doi.org/10.1063/1.352943
  25. D.-T. Quach, D.-T. Pham, D. Handoko, J.-H. Shim, D.E. Kim, K.-M. Lee, J.-R. Jeong, N. Kim, H.-J. Shin, D.-H. Kim, Physica B532 (2018) 221.