• Title/Summary/Keyword: sodium methacrylate

Search Result 47, Processing Time 0.023 seconds

A Study on Synthesis of Functional Composite Latex and Characteristics of Thermal Decomposition (기능성 복합 라텍스의 합성과 열분해 특성에 관한 연구)

  • Kwon, Jae-Beom;Kim, Nam-Suk;Lee, Nae-Woo;Seul, Soo-Duck
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.47-53
    • /
    • 2004
  • Emulsion polymerization ws carried out using Alkyl methacrylate(RMA) like MMA, EMA, BMA and Styrene Monomer(SM) for core-shell latex preparation. It was synthesized at $80^{\circ}C$ in the presence of anionic surfactant SLS(Sodium Lauryl Sulfate). FT-IR and DSC analysis are used to confirm the synthesized core-shell emulsion latexes. Moreover DSC and TGA were used to investigate the thermal characterisitcs of them. The differences of the decomposition rate and the activation energy from TGA and DSC analysis are not so big. It considers that the pendent group is not affect of the thermal characteristics and stability on core-shell latexes, which is synthesized with RMA and Styrene. For investigating combustion products, LC50 values were calculated by FED(Fractional Effective Dose)from the Pyrolyzer-Mass sepctrometer.

Preparation and Characteristics of Acrylic Removable Protective Coatings (박리형 아크릴 보호코팅제의 제조 및 특성)

  • Hahm, Hyun-Sik;Park, Ji-Young;Hwang, Jae-Young;Ahn, Sung-Hwan;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.332-338
    • /
    • 2005
  • This study was conducted to prepare acrylic removable protective coatings by emulsion polymerization. Monomers used were n-butyl acrylate, acrylonitrile, butyl methacrylate. Emulsifiers used were sodium lauryl sulfate and polyoxyethylene lauryl ether, which are an anionic emulsifier and a nonionic emulsifier respectively. Potassium persulfate was used as an initiator and polyvinyl alcohol was used as a stabilizer. Emulsion polymerization was carried out in a semi-batch reactor at $70^{\circ}C$ and agitation speed was 200 rpm. Tensile strength, extension, peel strength, viscosity, and solid contents of the synthesized coatings were examined. The coatings prepared with BA:AN = 60:20 (in weight ratio) satisfied the standard for automobile in terms of extension and peel strength. When the concentration of BMA was in a range of $18{\sim}23$ wt%, the prepared coatings satisfied the standard for automobile in terms of peel strength and water resistance.

REPLACEMENT OF A PHOTOMULTIPLIER TUBE IN A 2-INCH THALLIUM-DOPED SODIUM IODIDE GAMMA SPECTROMETER WITH SILICON PHOTOMULTIPLIERS AND A LIGHT GUIDE

  • KIM, CHANKYU;KIM, HYOUNGTAEK;KIM, JONGYUL;LEE, CHAEHUN;YOO, HYUNJUN;KANG, DONG UK;CHO, MINSIK;KIM, MYUNG SOO;LEE, DAEHEE;KIM, YEWON;LIM, KYUNG TAEK;YANG, SHIYOUNG;CHO, GYUSEONG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.479-487
    • /
    • 2015
  • The thallium-doped sodium iodide [NaI(Tl)] scintillation detector is preferred as a gamma spectrometer in many fields because of its general advantages. A silicon photomultiplier (SiPM) has recently been developed and its application area has been expanded as an alternative to photomultiplier tubes (PMTs). It has merits such as a low operating voltage, compact size, cheap production cost, and magnetic resonance compatibility. In this study, an array of SiPMs is used to develop an NaI(Tl) gamma spectrometer. To maintain detection efficiency, a commercial NaI(Tl) $2^{\prime}{\times}2^{\prime}$ scintillator is used, and a light guide is used for the transport and collection of generated photons from the scintillator to the SiPMs without loss. The test light guides were fabricated with polymethyl methacrylate and reflective materials. The gamma spectrometer systems were set up and included light guides. Through a series of measurements, the characteristics of the light guides and the proposed gamma spectrometer were evaluated. Simulation of the light collection was accomplished using the DETECT 97 code (A. Levin, E. Hoskinson, and C. Moison, University of Michigan, USA) to analyze the measurement results. The system, which included SiPMs and the light guide, achieved 14.11% full width at half maximum energy resolution at 662 keV.

Synthesis and Characterization of Chelating Resins Containing Thiol Croups (티올기를 함유하는 킬레이트 수지의 합성 및 특성)

  • 박인환;방영길;김경만;주혁종
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.330-339
    • /
    • 2003
  • Three kinds of macro-reticular bead-typed chelating resins having thiol groups were obtained from basic resins like poly(strene-co-divinylbenzene) (PSD) and poly(styrene-co-methyl methacrylate-co-divinylbenzene) (PSMD): the chelating resin (I) was prepared by chloromethylation of phenyl rings of PSD followed by thiolation using thiourea. The chelating resin (ll) was designed to provide enough space to chelate heavy metal ions; one chloromethyl group was obtained by chlorination of hydroxymethyl group provided by reduction of carboxylic ester group of PSMD and another chloromethyl group was obtained by direct chloromethylation of pendent phenyl group using chloromethyl methyl ether. Both of chloromethyl groups were thiolated by using thiourea. The chelating resin (III) was prepared by chlorosulfonation of phenyl rings of PSD followed by thiolation using sodium hydrosulfide. The adsorbtivity toward heavy metal ions was evaluated. The hydrophobic chelating resin (I) with thiol groups showed highly selective adsorption capacity f3r mercury ions. However, the chelating resin (II) with thiol groups showed mere effective adsorption capacity toward mercury ions than chelating resin (I) with thiol groups, and showed some adsorption capacity for other heavy metal ions like Cu$\^$2+/, Pb$\^$2+/, Cd$\^$2+/ and Cr$\^$3+/. On the other hand, the chelating resin (III) which have hydrophilic thiosulfonic acid groups was found to be effective adsorbents for some heavy metal ions such as Hg$\^$2+/, Cu$\^$2+/, Ni$\^$2+/, Co$\^$2+/, Cr$\^$3+/ and especially Cd$\^$2+/ and Pb$\^$2+/.

Comparative evaluation of NovaMin desensitizer and Gluma desensitizer on dentinal tubule occlusion: a scanning electron microscopic study

  • Joshi, Surabhi;Gowda, Ashwini Shivananje;Joshi, Chintan
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.6
    • /
    • pp.269-275
    • /
    • 2013
  • Purpose: In this study, the effect of calcium sodium phosphosilicate (NovaMin) desensitizing agent, which is a powder-based system, and hydroxyethyl methacrylate and glutaraldehyde (Gluma desensitizer), which is liquid-based system, on dentinal tubule occlusion was analyzed by scanning electron microscope. The effects of the above two along with one control group were compared to determine the more effective method of sealing the dentinal tubules after initial application. Methods: Twenty specimens were allocated to each of 3 groups: Control, Gluma desensitizer, and NovaMin. Two additional samples were also prepared and treated with Gluma and NovaMin; these samples were longitudinally fractured. The specimens were prepared from extracted sound human premolars and were stored in 10% formalin at room temperature. The teeth were cleaned of gross debris and then sectioned to provide one to two dentin specimens. The dentin specimens were etched with 6% citric acid for 2 minutes and rinsed in distilled water. Control discs were dried, and the test discs were treated with the desensitizing agents as per the manufacturer's instructions. The discs as well as longitudinal sections were later analyzed under the scanning electron microscope. The proportions of completely occluded, partially occluded, and open tubules within each group were calculated. The ratios of completely and partially occluded tubules to the total tubules for all the groups was determined, and the data was statistically analyzed using nonparametric tests and statistical significance was calculated. Results: NovaMin showed more completely occluded tubules ($0.545{\pm}0.051$) while Gluma desensitizer showed more partially occluded tubules ($0.532{\pm}0.075$). The differences among all the groups were statistically significant ($P{\leq}0.05$). Conclusion: Both materials were effective in occluding dentinal tubules but NovaMin appeared more promising in occluding tubules completely after initial application.

Manufacture of PMMA/PBA and PBA/PMMA core Shell Composite Particles - Effect of emulsifier - (PMMA/PBA와 PBA/PMMA Core Shell 복합입자의 제조 - 유화제의 영향 -)

  • Seul, Soo Duk
    • Journal of Adhesion and Interface
    • /
    • v.11 no.3
    • /
    • pp.112-119
    • /
    • 2010
  • Poly(methyl methacrylate)/poly(butyl acrylate) PMMA/PBA core-shell composite particles were prepared by the emulsion polymerization of MMA and BA in the presence of different concentration of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the measured conversion and particle size distribution, morphology, average molecular weight distribution, observation of film formation and particle formation, glass transition temperature and physical properties of polymerized core-shell composition particles for using adhesive binder. When the concentration of 0.03 wt% surfactant, the conversions of PMMA and PBA core polymerization are excellent as 95.8% for PMMA core and 92.3% for PBA core. Core-shell composite particles are obtained 90.0% for PMMA/PBA core-shell composite particles and 89.0% for PMMA/PBA core-shell composite particles. It is considered that the core and shell particles are polymerized to be confirmed FT-IR spectra and average molecular weight measured with a GPC, formation of the composite particles is confirmed by the film formation from normal temperature, and composition of inside and outside of the composite particle is confirmed by TEM photograph. The synthesized polymer has two glass transition temperatures, suggesting that the polymer is composed of core polymer and shell polymer unlike general copolymers. It is considered that each core-shell composite particle can be used as a high functionality adhesion binder by the measurement of tensile strength and elongation.

A Study on the Improvement of Skin-affinity and Spreadability in the Pressed Powder using Air Jet Mill Process and Mono-dispersed PMMA (Air Jet Mill 공법과 PMMA의 단분산성이 프레스드 파우더의 밀착성 및 발림성 향상에 대한 연구)

  • Song, Sang Hoon;Hong, Kyong Woo;Han, Jong Seob;Kim, Kyong Seob;Park, Sun Gyoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • The key quality attributes of the pressed powder, one of base makeup products, are skin-affinity and spreadability. In general, there was a limit to meet skin-affinity and spreadability simultaneously, which are opposite attributes each other. In this study, air jet mill process was tried to satisfy two main properties. Skin-affinity was improved by a wet coating of sericite with a mixture of lauroyl lysine (LL) and sodium cocoyl glutamate (SCG). The application of mono-dispersed polymethyl methacrylate (PMMA) and diphenyl dimethicone/vinyl diphenyl dimethicone/silsesquioxane crosspolymer (DDVDDSC) improved both qualities. Air jet mill process has been mainly applied in the pharmaceutical and food industries, and is a method used for processing powder materials in cosmetic field. In this study, we were able to complete makeup cosmetics with an optimum particle size $6.8{\mu}m$ by combining the air jet mill process at the manufacturing stage. It was confirmed that the Ti element was uniformly distributed throughout the cosmetics by EDS mapping, and that the corners of the tabular grains were rounded by SEM analysis. It is considered that this can provide an effect of improving the spreadability when the cosmetic is applied to the skin by using a makeup tool. LL with excellent skin compatibility and SCG derived from coconut with little skin irritation were wet coated to further enhance the adhesion of sericite. SEM images were analyzed to evaluate effect of the dispersion and uniformity of PMMA on spreadability. With the spherical shapes of similar size, it was found that the spreading effect was further increased when the distribution was homogeneously mono-dispersed. The dispersion and spreadability of PMMA were confirmed by measuring the kinetic friction and optimal content was determined. The silicone rubber powder, DDVDDSC, was confirmed by evaluating the hardness, spreading value, and drop test. Finally, it was found that the dispersion of PMMA and silicone rubber powder affected spreadability. Such makeup cosmetics have excellent stability in drop test while having appropriate hardness, and good stability over time. Taken together, it is concluded that air jet mill process can be utilized as a method to improve skin-affinity and spreadability of the pressed powder.