• Title/Summary/Keyword: sodium channel blocker

Search Result 28, Processing Time 0.018 seconds

Tissue Biosensor for Determination of $Na^{+}$ Channel Blocker in Chinese Drug and Seaweed (Porphyra yezoensis Ueda) (조직 센서를 이용한 한약재료 및 해조류의 $Na^{+}$ 챈널 차단물질 측정)

  • 천병수;류종수;검목건;도범열생
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.71-76
    • /
    • 1998
  • Tissue biosensor for mearsuring sodium channel blockers, such tetrodotoxin(TTX), saxitoxin (STX) and paralytic shellfish poisoning(PSP) consisted of frog bladder membrane, and $Na^{+}$ electrode. The proposed biosensor was applied to determine Chinese drug and dry or wet Porphyra yezonesis $Na^{+}$ channel blockers below the detection limit of the standard mouse bio-assay while the observed detection limit didn't cause human poisoning. The proposed biosensor system may be used for future $Na^{+}$ channel blockers monitoring within the marine environment.

  • PDF

Tramadol as a Voltage-Gated Sodium Channel Blocker of Peripheral Sodium Channels Nav1.7 and Nav1.5

  • Chan-Su, Bok;Ryeong-Eun, Kim;Yong-Yeon, Cho;Jin-Sung, Choi
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.168-175
    • /
    • 2023
  • Tramadol is an opioid analog used to treat chronic and acute pain. Intradermal injections of tramadol at hundreds of millimoles have been shown to produce a local anesthetic effect. We used the whole-cell patch-clamp technique in this study to investigate whether tramadol blocks the sodium current in HEK293 cells, which stably express the pain threshold sodium channel Nav1.7 or the cardiac sodium channel Nav1.5. The half-maximal inhibitory concentration of tramadol was 0.73 mM for Nav1.7 and 0.43 mM for Nav1.5 at a holding potential of -100 mV. The blocking effects of tramadol were completely reversible. Tramadol shifted the steady-state inactivation curves of Nav1.7 and Nav1.5 toward hyperpolarization. Tramadol also slowed the recovery rate from the inactivation of Nav1.7 and Nav1.5 and induced stronger use-dependent inhibition. Because the mean plasma concentration of tramadol upon oral administration is lower than its mean blocking concentration of sodium channels in this study, it is unlikely that tramadol in plasma will have an analgesic effect by blocking Nav1.7 or show cardiotoxicity by blocking Nav1.5. However, tramadol could act as a local anesthetic when used at a concentration of several hundred millimoles by intradermal injection and as an antiarrhythmic when injected intravenously at a similar dose, as does lidocaine.

Action Mechanisms of NANC Neurotransmitters in Smooth Muscle of Guinea Pig Ileum (기니픽의 회장평활근에서 NANC 신경전달물질의 작용기전)

  • Kim, Jong-Hoon;Kang, Bok-Soon;Lee, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.783-796
    • /
    • 1997
  • The relaxation induced by stimulation of the inhibitory non-adrenergic, non-cholinergic (iNANC) nerve is mediated by the release of iNANC neurotransmitters such as nitric oxide (NO), vasoactive intestinal peptide (VIP) and adenosine triphosphate (ATP). The mechanisms of NO, VIP or ATP-induced relaxation have been partly determined in previous studies, but the detailed mechanism remains unknown. We tried to identify the nature of iNANC neurotransmitters in the smooth muscle of guinea pig ileum and to determine the mechanism of the inhibitory effect of nitric oxide. We measured the effect of NO-donors VIP and ATP on the intracellular $Ca^{2+}$ concentration$([Ca^{2+}]_i)$, by means of a fluorescence dye(fura 2) and tension simultaneously in the isolated guinea pig ileal smooth muscle. Following are the results obtained. 1. Sodium nitroprusside $(SNP:10^{-5}\;M)$ or S -nitro-N-acetyl-penicillamine $(SNP:10^{-5}\;M)$ decreased resting $[Ca^{2+}]_i$ I and tension of muscle. SNP or SNAP also inhibited rhythmic oscillation of $[Ca^{2+}]_i$ and tension. In 40mM $K^+$ solution or carbachol ($(CCh:10^{-6}\;M)$-induced precontracted muscle, SNP decreased muscle tension. VIP did not change $[Ca^{2+}]_i$ and tension in the resting or precontracted muscle, but ATP increased resting $[Ca^{2+}]_i$ and tension in the resting muscle. 2. 1H-[1,2,4]oxadiazol(4,3-a)quinoxalin-1-one $(ODQ:1\;{\mu}M)$, a specific inhibitor of soluble guanylate cyclase, limited the inhibitory effect of SNP 3. Glibenclamide $(10\;{\mu}M)$, a blocker of $K_{ATP}$ channel, and 4-aminopyridine (4-AP:5 mM), a blocker of delayed rectifier K channel, apamin $(0.1\;{\mu}M)$, a blocker of small conductance $K_{Ca}$ channel had no effect on the inhibitory effect of SNP. Iberiotoxin $(0.1\;{\mu}M)$, a blocker of large conductance $K_{Ca}$ channel, significantly increased the resting $[Ca^{2+}]_i$, and tension, and limited the inhibitory effect of SNP. 4. Nifedipine $(1\;{\mu}M)$ or elimination of external $Ca^{2+}$ decreased not only resting $[Ca^{2+}]_i$ and tension but also oscillation of $[Ca^{2+}]_i$ and tension. Ryanodine $(5\;{\mu}M)$ and cyclopiazonic acid $(10\;{\mu}M)$ decreased oscillation of $[Ca^{2+}]_i$ and tension. 5. SNP decreased $Ca^{2+}$ sensitivity of contractile protein. In conclusion, these results suggest that 1) NO is an inhibitory neurotransmitter in the guinea pig ileum, 2) the inhibitory effect of SNP on the $[Ca^{2+}]_i$ and tension of the muscle is due to a decrease in $[Ca^{2+}]_i$ by activation of the large conductance $K_{Ca}$ channel and a decrease in the sensitivity of contractile elements to $Ca^{2+}$ through activation of G-kinase.

  • PDF

The effect of SKF S25A on SNP-, Ach-, or Pinacidil-Induced Relaxation in the Aorta of Rat (SKF 525A가 휜쥐의 대동맥에서 Sodium nitroprusside, Acetylcholine, Pinacidil에 의한 이완반응에 미치는 효과)

  • 박조영;김학림;김주원;신창열;최윤미;김진학;안형수;손의동;허인회
    • YAKHAK HOEJI
    • /
    • v.44 no.1
    • /
    • pp.80-86
    • /
    • 2000
  • TEA, glibenclamide, L-NAME and SKF 525A-induced contraction were investigated using acetylcholine, sodium nitroprusside (SNP, NO donor) and pinacidil (ATP sensitive $K^{+}$ channel opener) in rat abdominal and thoracic aorta. The relaxant effects of acetylcholine, SNP and pinacidil were not different in the abdominal aorta and in the thoracic aorta. Acetylcholine-induced relaxation was dependent on endothelial cell, but pinacidil was independent endothelia cell. In the presence of TEA, glibenclamide, L-NAME, mepacrine and SKF 525A, acetylcholine and SNP did not change, but pinacidil-induced relaxation was significantly reduced in presence of glibenclamide, which is ATP sensitive $K^{+}$ channel blocker. SKF 525A, which is inhibitor of cytochrome P$_{450}$ dependent epoxygenase, partially inhibited the pinacidil-induced relaxation. These results indicate that the pinacidil-induced relaxation may be mediated by ATP sensitive $K^{+}$ channel and partially by EETs, which is produced by cytochrome P$_{450}$ dependent epoxygenase.enase.

  • PDF

Reactive oxygen species increase neuronal excitability via activation of nonspecific cation channel in rat medullary dorsal horn neurons

  • Lee, Hae In;Park, Byung Rim;Chun, Sang Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.371-376
    • /
    • 2017
  • The caudal subnucleus of the spinal trigeminal nucleus (medullary dorsal horn; MDH) receives direct inputs from small diameter primary afferent fibers that predominantly transmit nociceptive information in the orofacial region. Recent studies indicate that reactive oxygen species (ROS) is involved in persistent pain, primarily through spinal mechanisms. In this study, we aimed to investigate the role of xanthine/xanthine oxidase (X/XO) system, a known generator of superoxide anion ($O_2{^-}$), on membrane excitability in the rat MDH neurons. For this, we used patch clamp recording and confocal imaging. An application of X/XO ($300{\mu}M/30mU$) induced membrane depolarization and inward currents. When slices were pretreated with ROS scavengers, such as phenyl N-tert-butylnitrone (PBN), superoxide dismutase (SOD), and catalase, X/XO-induced responses decreased. Fluorescence intensity in the DCF-DA and DHE-loaded MDH cells increased on the application of X/XO. An anion channel blocker, 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), significantly decreased X/XO-induced depolarization. X/XO elicited an inward current associated with a linear current-voltage relationship that reversed near -40 mV. X/XO-induced depolarization reduced in the presence of $La^{3+}$, a nonselective cation channel (NSCC) blocker, and by lowering the external sodium concentration, indicating that membrane depolarization and inward current are induced by influx of $Na^+$ ions. In conclusion, X/XO-induced ROS modulate the membrane excitability of MDH neurons, which was related to the activation of NSCC.

Effect of Diltiazem on Renal Function in the Dog (딜티아젬의 개 신장기능에 미치는 영향)

  • Ko, Suk-Tai;Lim, Kwang-Nam
    • YAKHAK HOEJI
    • /
    • v.38 no.5
    • /
    • pp.568-578
    • /
    • 1994
  • This study was performed in order to investigate the effect of diltiazem, which is a $Ca^{2+}$ channel blocker of benzothiazepine derivatives, on renal function in the dog. Diltiazem, when infused into the vein or carotid artery, produced the antidiuresis accompanied with the decreased excretion rates of sodium and potassium in urine$(E_{Na},\;E_K)$ and the increased reabsorption rates of sodium and potassium in renal tubules$(R_{Na},\;R_K)$. Diltiazem, when infused into a renal artery, exhibited the diuresis along with the increased renal plasma flow(RPF), osmolar clearance$(C_{osm})$, $E_{Na}$ and $E_K$, and decreased $R_{Na}$ and $R_K$ in only infused kidney. Above results suggest that diltiazem possess both antidiuretic action through central action and diuretic action by direct inhibition of electrolytes reabsorption rates in renal tubules, mainly distal tubule.

  • PDF

Effect of Neurosteroid Modulation on Global Ischaemia-Reperfusion-Induced Cerebral Injury in Mice

  • Grewal, Amarjot Kaur;Jaggi, Amteshwar Singh;Rana, Avtar Chand;Singh, Nirmal
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.6
    • /
    • pp.485-491
    • /
    • 2013
  • The present study was designed to investigate the putative effect of neurosteroid modulation on global ischaemia-reperfusion-induced cerebral injury in mice. Bilateral carotid artery occlusion followed by reperfusion, produced a significant rise in cerebral infarct size along with impairment of grip strength and motor coordination in Swiss albino mice. Administration of carbamazepine (16 mg/kg, i.p.) before global cerebral ischaemia significantly attenuated cerebral infarct size and improved the motor performance. However, administration of indomethacin (100 mg/kg, i.p.) attenuated the neuroprotective effect of carbamazepine. Mexiletine (50 mg/kg, i.p.) did not produce significant neuroprotective effect. It may be concluded that the neuroprotective effect of carbamazepine may be due to increase in synthesis of neurosteroids perhaps by activating enzyme ($3{\alpha}$ HSD) as indomethacin attenuated the neuroprotective effect of carbamazepine. The sodium channel blocking effect of carbamazepine may not be involved in neuroprotection as mexiletine, a sodium channel blocker, did not produce significant neuroprotective effect.

Mood Stabilizers (기분안정제)

  • Kim, Young-Hoon;Jang, Tae-Soep
    • Korean Journal of Biological Psychiatry
    • /
    • v.1 no.1
    • /
    • pp.40-59
    • /
    • 1994
  • The introduction of lithium salts for the treatment of mood disorder by Code in 1949 was a major therapeutic breakthrough. Yet it is far from the universal therpeutic agent in the treatment of mood disorders. Indeed, some acutely manic patients do not respond adeqately to lithium and some individuals experience breakthrough affective episodes during lithium maintenance. In the last decode, it has become c1ear that a significant number of patients with more highly recurrent disorders may require alternative or enhanced forms of prophylactic treatment. For these reasons, a variety of other drugs hove been employed for the treatment and prophylaxis of mood disorders. Efforts to develop new pharmacologic strategies for mood disorder hove included a diverse array of medications, ranging from potent benzodiazepines to novel neuroleptics and from anticonvulsants to calcium channel blockers. The anticonvulsants appear particularly useful in cases of dysphoric mania and rapid cycling state, subforms of bipolar disorder that respond quite poorly to conventional treatments. Among all of these new pharmacologic strategy, carbamazepine and sodium valproate have received the broadest clinical applications as maintenance therapies. The data documenting the short-term antimanic effectiveness of the calcium channel blocker verapamil and benzodiazepins such as clonazepam and lorazepam appear also promising. A number of other theoretically interesting, as well as clinically relevant therapies, which are not presently employed routinly, hove also been studied, including 2 blocker clonidine, atypical antipsychotic clozapine, cholinomimetics, 5-HT enhancers, thyroid and magnesium preparations. Now prophylaxis in mood disorder remains a considerable therapeutic challenge. Controlled testing of the prophylactic efficacy of compounds such as carbamazepine, valproic acid, and the calcium channel blockers represent important next step in the clinical trials for mood disorder.

  • PDF

Formulation Design of Sustained-Release Matrix Tablets Containing 4-Aminopyridine (유드라짓과 알긴산 나트륨 매트릭스를 이용한 4-Aminopyridine의 서방성 제제설계)

  • Kim, Jeong-Soo;Kim, Dong-Woo;Lee, Gye-Won;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.6
    • /
    • pp.453-460
    • /
    • 2005
  • 4-Aminopyridine (AP) is a potassium channel blocker used in the treatment of neurological disorders such as multiple sclerosis and Alzheimer disease. AP‘s window of therapeutic effect appears to correlate with its plasma halflife (3.5 hours). It demonstrates pH-dependent solubility because of a weakly basic drug. In addition, the resulting release from conventional matrix tablets decreases with increasing pH-milieu of the gastrointestinal tract. The aim of this study is to design sustained release matrix tablet containing AP, overcoming this problem. $Eudragit^{\circledR}$ L 100 (EuL) and sodium alginate were used in an effort to achieve pH independent drug release. The effect of sodium alginate and EuL on drug release from matrix tablet was investigated. The drug release behavior from the different tablets was analyzed by $t_{20%},\;t_{40%},\;t_{60%}$, The exponential diffusion coefficient n, kinetic constant K were calculated according to the Korsmeyer-Peppas equation. The drug release from matrix tablets prepared with sodium alginate was decreased with increasing the content of sodium alginate in pH 7.4 while there is no significant difference in pH 1.2. The exponent n values were determined to be approximately 0.5 and 0.8 respectively, in both pH 1.2 and 7.4. These values indicate diffusion-based anomalous mechanism and erosion-based anomalous mechanism, respectively. The drug release from sodium alginate matrix tablets prepared with solid dispersion of EuL containing drug showed a slow drug release in an acidic medium and a more fast drug release in phosphate medium, compared with sodium alginate matrix tablets prepared with physical mixture. These results may be attributed to the gel forming ability of sodium alginate and pH dependent solubility of EuL. Therefore, sustained-release AP matrix tablets using sodium alginate and EuL were successfully prepared.

Ryanodine Receptor-mediated Calcium Release Regulates Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons

  • Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.40 no.4
    • /
    • pp.211-216
    • /
    • 2015
  • Nitric Oxide (NO) is an important signaling molecule in the nociceptive process. Our previous study suggested that high concentrations of sodium nitroprusside (SNP), a NO donor, induce a membrane hyperpolarization and outward current through large conductances calcium-activated potassium ($BK_{ca}$) channels in substantia gelatinosa (SG) neurons. In this study, patch clamp recording in spinal slices was used to investigate the sources of $Ca^{2+}$ that induces $Ca^{2+}$-activated potassium currents. Application of SNP induced a membrane hyperpolarization, which was significantly inhibited by hemoglobin and 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (c-PTIO), NO scavengers. SNP-induced hyperpolarization was decreased in the presence of charybdotoxin, a selective $BK_{Ca}$ channel blocker. In addition, SNP-induced response was significantly blocked by pretreatment of thapsigargin which can remove $Ca^{2+}$ in endoplasmic reticulum, and decreased by pretreatment of dentrolene, a ryanodine receptors (RyR) blocker. These data suggested that NO induces a membrane hyperpolarization through $BK_{ca}$ channels, which are activated by intracellular $Ca^{2+}$ increase via activation of RyR of $Ca^{2+}$ stores.