Acknowledgement
This study was supported by the Research Fund of the Ministry of Science, ICT and Future Planning (NRF-2020R1A2B5B02001804) and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1A2B4011333, NRF-2018R1A6A1A03025108).
References
- Altunkaya, H., Ozer, Y., Kargi, E. and Babuccu, O. (2003) Comparison of local anaesthetic effects of tramadol with prilocaine for minor surgical procedures. Br. J. Anaesth. 90, 320-322. https://doi.org/10.1093/bja/aeg079
- Bean, B. P., Cohen, C. J. and Tsien, R. W. (1983) Lidocaine block of cardiac sodium channels. J. Gen. Physiol. 81,613-642. https://doi.org/10.1085/jgp.81.5.613
- Beyazova, M., Ozturk, E., Zinnuroglu, M., Gokyar, I., Babacan, A. and Kaya, K. (2011) Effects of perineural tramadol on nerve conduction of sural nerve. Agri 23, 51-56.
- Calloe, K., Refaat, M. M., Grubb, S., Wojciak, J., Campagna, J., Thomsen, N. M., Nussbaum, R. L., Scheinman, M. M. and Schmitt, N. (2013) Characterization and mechanisms of action of novel NaV1.5 channel mutations associated with Brugada syndrome. Circ. Arrhythm. Electrophysiol. 6, 177-184. https://doi.org/10.1161/CIRCEP.112.974220
- Catterall, W. A., Goldin, A. L. and Waxman, S. G. (2005) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol. Rev. 57,397-409. https://doi.org/10.1124/pr.57.4.4
- Chevrier, P., Vijayaragavan, K. and Chahine, M. (2004) Differential modulation of Nav1.7 and Nav1.8 peripheral nerve sodium channels by the local anesthetic lidocaine. Br. J. Pharmacol. 142, 576-584. https://doi.org/10.1038/sj.bjp.0705796
- Choi, J.-H., Kim, R.-E., Cho, Y.-Y. and Choi, J.-S. (2023) Stable expression of human Nav1.5 for high-throughput cardiac safety assessment. Mol. Cell. Toxicol. doi: 10.1007/s13273-023-00331-8 [Online ahead of print].
- Choi, J. S., Dib-Hajj, S. D. and Waxman, S. G. (2007) Differential slow inactivation and use-dependent inhibition of Nav1.8 channels contribute to distinct firing properties in IB4+ and IB4- DRG neurons. J. Neurophysiol. 97, 1258-1265. https://doi.org/10.1152/jn.01033.2006
- Cox, J. J., Reimann, F., Nicholas, A. K., Thornton, G., Roberts, E., Springell, K., Karbani, G., Jafri, H., Mannan, J., Raashid, Y., Al-Gazali, L., Hamamy, H., Valente, E. M., Gorman, S., Williams, R., McHale, D. P., Wood, J. N., Gribble, F. M. and Woods, C. G. (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894-898. https://doi.org/10.1038/nature05413
- de Lera Ruiz, M. and Kraus, R. L. (2015) Voltage-gated sodium channels: structure, function, pharmacology, and clinical indications. J. Med. Chem. 58, 7093-7118. https://doi.org/10.1021/jm501981g
- Dib-Hajj, S. D. and Waxman, S. G. (2019) Sodium channels in human pain disorders: genetics and pharmacogenomics. Annu. Rev. Neurosci. 42, 87-106. https://doi.org/10.1146/annurev-neuro-070918-050144
- Dokken, K. and Fairley, P. (2021) Sodium channel blocker toxicity. In: StatPearls. Treasure Island (FL).
- Emamhadi, M., Sanaei-Zadeh, H., Nikniya, M., Zamani, N. and Dart, R. C. (2012) Electrocardiographic manifestations of tramadol toxicity with special reference to their ability for prediction of seizures. Am. J. Emerg. Med. 30, 1481-1485. https://doi.org/10.1016/j.ajem.2011.12.009
- Faria, J., Barbosa, J., Moreira, R., Queiros, O., Carvalho, F. and DinisOliveira, R. J. (2018) Comparative pharmacology and toxicology of tramadol and tapentadol. Eur. J. Pain 22, 827-844. https://doi.org/10.1002/ejp.1196
- Grond, S. and Sablotzki, A. (2004) Clinical pharmacology of tramadol. Clin. Pharmacokinet. 43, 879-923. https://doi.org/10.2165/00003088-200443130-00004
- Haeseler, G., Foadi, N., Ahrens, J., Dengler, R., Hecker, H. and Leuwer, M. (2006) Tramadol, fentanyl and sufentanil but not morphine block voltage-operated sodium channels. Pain 126, 234-244. https://doi.org/10.1016/j.pain.2006.07.003
- Han, C., Themistocleous, A. C., Estacion, M., Dib-Hajj, F. B., Blesneac, I., Macala, L., Fratter, C., Bennett, D. L., Waxman, S. G. and Dib-Hajj, S. D. (2018) The novel activity of carbamazepine as an activation modulator extends from NaV1.7 mutations to the NaV1.8-S242T mutant channel from a patient with painful diabetic neuropathy. Mol. Pharmacol. 94, 1256-1269. https://doi.org/10.1124/mol.118.113076
- Leffler, A., Frank, G., Kistner, K., Niedermirtl, F., Koppert, W., Reeh, P. W. and Nau, C. (2012) Local anesthetic-like inhibition of voltage-gated Na(+) channels by the partial mu-opioid receptor agonist buprenorphine. Anesthesiology 116, 1335-1346. https://doi.org/10.1097/ALN.0b013e3182557917
- Meents, J. E., Juhasz, K., Stolzle-Feix, S., Peuckmann-Post, V., Rolke, R. and Lampert, A. (2018) The opioid oxycodone use-dependently inhibits the cardiac sodium channel NaV 1.5. Br. J. Pharmacol. 175, 3007-3020. https://doi.org/10.1111/bph.14348
- Mert, T., Gunes, Y., Guven, M., Gunay, I. and Gocmen, C. (2003) Differential effects of lidocaine and tramadol on modified nerve impulse by 4-aminopyridine in rats. Pharmacology 69, 68-73. https://doi.org/10.1159/000072358
- Mulroy, M. F. (2002) Systemic toxicity and cardiotoxicity from local anesthetics: incidence and preventive measures. Reg. Anesth. Pain Med. 27, 556-561. https://doi.org/10.1097/00115550-200211000-00003
- Nakajima, T., Kaneko, Y., Saito, A., Ota, M., Iijima, T. and Kurabayashi, M. (2015) Enhanced fast-inactivated state stability of cardiac sodium channels by a novel voltage sensor SCN5A mutation, R1632C, as a cause of atypical Brugada syndrome. Heart Rhythm 12, 2296-2304. https://doi.org/10.1016/j.hrthm.2015.05.032
- Olschewski, A., Hempelmann, G., Vogel, W. and Safronov, B. V. (2001) Suppression of potassium conductance by droperidol has influence on excitability of spinal sensory neurons. Anesthesiology 94, 280-289. https://doi.org/10.1097/00000542-200102000-00018
- Pang, W. W., Mok, M. S., Chang, D. P. and Huang, M. H. (1998) Local anesthetic effect of tramadol, metoclopramide, and lidocaine following intradermal injection. Reg. Anesth. Pain Med. 23, 580-583. https://doi.org/10.1016/S1098-7339(98)90085-2
- Smyj, R., Wang, X. P. and Han, F. (2013) Tramadol hydrochloride. Profiles Drug Subst. Excip. Relat. Methodol. 38, 463-494. https://doi.org/10.1016/B978-0-12-407691-4.00011-3
- Tsai, T. Y., Tsai, Y. C., Wu, S. N. and Liu, Y. C. (2006) Tramadol-induced blockade of delayed rectifier potassium current in NG108-15 neuronal cells. Eur. J. Pain 10, 597-601. https://doi.org/10.1016/j.ejpain.2005.09.001
- Wagner, L. E., 2nd, Eaton, M., Sabnis, S. S. and Gingrich, K. J. (1999) Meperidine and lidocaine block of recombinant voltage-dependent Na+ channels: evidence that meperidine is a local anesthetic. Anesthesiology 91, 1481-1490. https://doi.org/10.1097/00000542-199911000-00042
- Wang, Q., Li, Z., Shen, J. and Keating, M. T. (1996) Genomic organization of the human SCN5A gene encoding the cardiac sodium channel. Genomics 34,9-16. https://doi.org/10.1006/geno.1996.0236
- Waxman, S. G. and Dib-Hajj, S. D. (2019) The two sides of NaV1.7: painful and painless channelopathies. Neuron 101, 765-767. https://doi.org/10.1016/j.neuron.2019.02.016
- Wolff, M., Olschewski, A., Vogel, W. and Hempelmann, G. (2004) Meperidine suppresses the excitability of spinal dorsal horn neurons. Anesthesiology 100, 947-955. https://doi.org/10.1097/00000542-200404000-00027
- Wu, Y. J., Guernon, J., Shi, J., Ditta, J., Robbins, K. J., Rajamani, R., Easton, A., Newton, A., Bourin, C., Mosure, K., Soars, M. G., Knox, R. J., Matchett, M., Pieschl, R. L., Post-Munson, D. J., Wang, S., Herrington, J., Graef, J., Newberry, K., Bristow, L. J., Meanwell, N. A., Olson, R., Thompson, L. A. and Dzierba, C. (2017) Development of new benzenesulfonamides as potent and selective Nav1.7 inhibitors for the treatment of pain. J. Med. Chem. 60, 2513-2525. https://doi.org/10.1021/acs.jmedchem.6b01918
- Yu, F. H. and Catterall, W. A. (2003) Overview of the voltage-gated sodium channel family. Genome Biol. 4, 207.