• Title/Summary/Keyword: sodium channel

Search Result 148, Processing Time 0.031 seconds

The Involvement of Protein Kinase C and Tyrosine Kinase in Vanadate-induced Contraction

  • Sim, Sang-Soo;Kim, Chang-Jong
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.315-319
    • /
    • 1998
  • Gastric smooth muscle of cats was used to investigate the involvement of protein kinase in vanadate-induced contraction. Vanadate caused a contraction of cat gastric smooth muscle in a dose-dependent manner. Vanadate-induced contraction was totally inhibited by 2 mM EGTA and 1.5 mM $LACI_3$ and significantly inhibited by $10\mu$M verapamil and $1\mu$M nifedipine, suggesting that vanadate-induced contraction is dependent on the extracellular $Ca^{2+}$ concentration, and the influx of extracellular $Ca^{2+}$ was mediated through voltage-dependent $Ca^{2+}$ channel. Both protein kinase C inhibitor and tyrosine kinase inhibitor significantly inhibited the vanadate-induced contraction and the combined inhibitory effect of two protein kinase inhibitors was greater than that of each one. But calmodulin antagonists did not have any influence on the vanadate-induced contraction. On the other hand, both forskolin ($1\mu$M) and sodium nitroprusside ($1\mu$M) significantly inhibited vanadate-induced contraction. Therefore, these results suggest that both protein kinase C and tyrosino kinase are involved in the vanadate-induced contraction which required the influx of extracellular $Ca^{2+}$ in cat gastric smooth muscle, and that the contractile mechanism of vanadate may be different from that of agonist binding to its specific receptor.

  • PDF

Effect of Extracellular Potassium on Delayed Rectifier Potassium Channel Proteins of KCNQ3 and KCNQ5 in Familial Hypokalemic Periodic Paralysis (가족성 저칼륨성 주기성 마비에서 세포외 칼륨농도가 지연성 정류형 채널을 형성하는 KCNQ3와 KCNQ5 단백질에 미치는 효과)

  • Kim, Sung-Jo;Kim, Dong-Hyun;Kim, June-Bum
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1484-1488
    • /
    • 2009
  • Familial hypokalemic periodic paralysis (HOKPP) is an autosomal dominant muscle disorder characterized by episodic attacks of muscle weakness with concomitant hypokalemia. Mutations in either a calcium channel gene (CACNA1S) or a sodium channel gene (SCN4A) have been shown to be responsible for this disease. The combination of sarcolemmal depolarization and hypokalemia has been attributed to abnormalities of the potassium conductance governing the resting membrane potential. To understand the pathophysiology of this disorder, we examined both mRNA and protein levels of delayed rectifier potassium channel genes, KCNQ3 and KCNQ5, in skeletal muscle fibers biopsied from patients with HOKOur results showed an increase in the cytoplasmic level of KCNQ3 protein in patients' cells exposed to 50 mM external concentration of potassium. However, mRNA levels of both channel genes did not show significant change in the same condition. Our results suggest that long term exposure of skeletal muscle cells in HOKPP patients to high extracellular potassium alters the KCNQ3 localization, which could possibly hinder the normal function of this channel protein. These findings may provide an important clue to understanding the molecular mechanism of familial hypokalemic periodic paralysis.

Effect of Amino Terminus of Gap Junction Hemichannel on Its Channel Gating (간극결합채널의 아미노말단이 채널개폐에 미치는 영향)

  • Yim Jaegil;Cheon Misaek;Jung Jin;Oh Seunghoon
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • Gap junction is an ion channel forming between adjacent cells. It also acts as a membrane channel like sodium or potassium channels in a single cell. The amino acid residues up to the $10^{th}$ position in the amino (N)-terminus of gap junction hemichannel affect gating polarity as well as current-voltage (I-V) relation. While wild-type Cx32 channel shows negative gating polarity and inwardly rectifying I-V relation, T8D channel in which threonine residue at $8^{th}$ position is replaced with negatively charged aspartate residue shows reverse gating polarity and linear I-V relation. It is still unclear whether these changes are resulted from the charge effect or the conformational change of the N-terminus. To clarify this issue, we made a mutant channel harboring cysteine residue at the $8^{th}$ position (T8C) and characterized its biophysical properties using substituted-cysteine accessibility method (SCAM). T8C channel shows negative gating polarity and inwardly rectifying I-V relation as wild-type channel does. This result indicates that the substitution of cysteine residue dose not perturb the original conformation of wild-type channel. To elucidate the charge effect two types of methaenthiosulfonate (MTS) reagents (negatively charged $MTSES^-$ and positively charged $MTSET^+$) were used. When $MTSES^-$ was applied, T8C channel behaved as T8D channel, showing positive gating polarity and linear I-V relation. This result indicates that the addition of a negative charge changes the biophysical properties of T8C channel. However, positively charged $MTSET^+$ maintained the main features of T8C channel as expected. It is likely that the addition of a charge by small MTS reagents does not distort the conformation of the N-terminus. Therefore, the opposite effects of $MTSES^-$ and $MTSETT^+$ on T8C channel suggest that the addition of a charge itself rather than the conformational change of the N-terminus changes gating polarity and I-V relation. Furthermore, the accessibility of MTS reagents to amino acid residues at the $8^{th}$ position supports the idea that the N-terminus of gap junction channel forms or lies in the aqueous pore.

Action Mechanisms of NANC Neurotransmitters in Smooth Muscle of Guinea Pig Ileum (기니픽의 회장평활근에서 NANC 신경전달물질의 작용기전)

  • Kim, Jong-Hoon;Kang, Bok-Soon;Lee, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.783-796
    • /
    • 1997
  • The relaxation induced by stimulation of the inhibitory non-adrenergic, non-cholinergic (iNANC) nerve is mediated by the release of iNANC neurotransmitters such as nitric oxide (NO), vasoactive intestinal peptide (VIP) and adenosine triphosphate (ATP). The mechanisms of NO, VIP or ATP-induced relaxation have been partly determined in previous studies, but the detailed mechanism remains unknown. We tried to identify the nature of iNANC neurotransmitters in the smooth muscle of guinea pig ileum and to determine the mechanism of the inhibitory effect of nitric oxide. We measured the effect of NO-donors VIP and ATP on the intracellular $Ca^{2+}$ concentration$([Ca^{2+}]_i)$, by means of a fluorescence dye(fura 2) and tension simultaneously in the isolated guinea pig ileal smooth muscle. Following are the results obtained. 1. Sodium nitroprusside $(SNP:10^{-5}\;M)$ or S -nitro-N-acetyl-penicillamine $(SNP:10^{-5}\;M)$ decreased resting $[Ca^{2+}]_i$ I and tension of muscle. SNP or SNAP also inhibited rhythmic oscillation of $[Ca^{2+}]_i$ and tension. In 40mM $K^+$ solution or carbachol ($(CCh:10^{-6}\;M)$-induced precontracted muscle, SNP decreased muscle tension. VIP did not change $[Ca^{2+}]_i$ and tension in the resting or precontracted muscle, but ATP increased resting $[Ca^{2+}]_i$ and tension in the resting muscle. 2. 1H-[1,2,4]oxadiazol(4,3-a)quinoxalin-1-one $(ODQ:1\;{\mu}M)$, a specific inhibitor of soluble guanylate cyclase, limited the inhibitory effect of SNP 3. Glibenclamide $(10\;{\mu}M)$, a blocker of $K_{ATP}$ channel, and 4-aminopyridine (4-AP:5 mM), a blocker of delayed rectifier K channel, apamin $(0.1\;{\mu}M)$, a blocker of small conductance $K_{Ca}$ channel had no effect on the inhibitory effect of SNP. Iberiotoxin $(0.1\;{\mu}M)$, a blocker of large conductance $K_{Ca}$ channel, significantly increased the resting $[Ca^{2+}]_i$, and tension, and limited the inhibitory effect of SNP. 4. Nifedipine $(1\;{\mu}M)$ or elimination of external $Ca^{2+}$ decreased not only resting $[Ca^{2+}]_i$ and tension but also oscillation of $[Ca^{2+}]_i$ and tension. Ryanodine $(5\;{\mu}M)$ and cyclopiazonic acid $(10\;{\mu}M)$ decreased oscillation of $[Ca^{2+}]_i$ and tension. 5. SNP decreased $Ca^{2+}$ sensitivity of contractile protein. In conclusion, these results suggest that 1) NO is an inhibitory neurotransmitter in the guinea pig ileum, 2) the inhibitory effect of SNP on the $[Ca^{2+}]_i$ and tension of the muscle is due to a decrease in $[Ca^{2+}]_i$ by activation of the large conductance $K_{Ca}$ channel and a decrease in the sensitivity of contractile elements to $Ca^{2+}$ through activation of G-kinase.

  • PDF

Mood Stabilizers (기분안정제)

  • Kim, Young-Hoon;Jang, Tae-Soep
    • Korean Journal of Biological Psychiatry
    • /
    • v.1 no.1
    • /
    • pp.40-59
    • /
    • 1994
  • The introduction of lithium salts for the treatment of mood disorder by Code in 1949 was a major therapeutic breakthrough. Yet it is far from the universal therpeutic agent in the treatment of mood disorders. Indeed, some acutely manic patients do not respond adeqately to lithium and some individuals experience breakthrough affective episodes during lithium maintenance. In the last decode, it has become c1ear that a significant number of patients with more highly recurrent disorders may require alternative or enhanced forms of prophylactic treatment. For these reasons, a variety of other drugs hove been employed for the treatment and prophylaxis of mood disorders. Efforts to develop new pharmacologic strategies for mood disorder hove included a diverse array of medications, ranging from potent benzodiazepines to novel neuroleptics and from anticonvulsants to calcium channel blockers. The anticonvulsants appear particularly useful in cases of dysphoric mania and rapid cycling state, subforms of bipolar disorder that respond quite poorly to conventional treatments. Among all of these new pharmacologic strategy, carbamazepine and sodium valproate have received the broadest clinical applications as maintenance therapies. The data documenting the short-term antimanic effectiveness of the calcium channel blocker verapamil and benzodiazepins such as clonazepam and lorazepam appear also promising. A number of other theoretically interesting, as well as clinically relevant therapies, which are not presently employed routinly, hove also been studied, including 2 blocker clonidine, atypical antipsychotic clozapine, cholinomimetics, 5-HT enhancers, thyroid and magnesium preparations. Now prophylaxis in mood disorder remains a considerable therapeutic challenge. Controlled testing of the prophylactic efficacy of compounds such as carbamazepine, valproic acid, and the calcium channel blockers represent important next step in the clinical trials for mood disorder.

  • PDF

Nifedipine Enhances Vasodepressor and Natriuretic Responses to Atrial Natriuretic Peptide in Anesthetized Rats (Nifedipine이 Atrial Natriuretic Peptide의 혈압내림효과에 미치는 영향)

  • Lee, Jong-Eun;Choi, Ki-Chul
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.115-121
    • /
    • 1990
  • The interaction between a calcium channel blocker nifedipine and atrial natriuretic peptide (ANP) was examined in normotensive and renal hypertensive rats. The infusion of either ANP or nifedipine produced a significant decrease in mean arterial pressure (MAP). The combined infusion of ANP with nifedipine resulted in a greater fall of MAP than did the infusion of each drug alone. ANP significantly increased urinary volume and excretion of sodium, while nifedipine was without effects. The diuretic/natriuretic effects of ANP were potentiated by the combined infusion with nifedipine. The vasodepressor and renal effects of ANP or nifedipine were qualitatively similar between the normotensive and hypertensive rats. Nifedipine caused an upward and leftward shift of the ANP dose-relaxation curve of the phenylephrine-precontracted thoracic aortic rings isolated from the normotensive rats , suggesting that the vasodilation sensitivity to ANP is increased in the presence of nifedipine. These results indicate that nifedipine enhances the vasodepressor effect of ANP, the likely mechanisms being attributable to a contraction of effective intravascular volume as a consequence of potentiated renal excretion and a greater peripheral vasodilation.

  • PDF

Honokiol Potentiates Pentobarbital-Induced Sleeping Behaviors through GABAA Receptor Cl- Channel Activation

  • Ma, Yuan;Ma, Hong;Jo, Young-Jun;Kim, Dong-Seon;Woo, Sung-Sick;Li, Rihua;Hong, Jin-Tae;Moon, Dong-Cheul;Oh, Ki-Wan;Eun, Jae-Soon
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.328-335
    • /
    • 2008
  • This study was undertaken to investigate whether honokiol could enhance the pentobarbitalinduced sleeping behaviors through $\gamma$-aminobutyric acid (GABA) receptor $Cl^-$ channel activation. Thirty minutes after the oral administration of honokiol, mice were received sodium pentobarbital (42 mg/kg, i.p.). The time elapsed from pentobarbital injection to the loss of the righting reflex was taken as sleeping latency. The time elapsed between the loss and voluntary recovery of the righting reflex was considered as the total sleeping time. Western blot technique and $Cl^-$ sensitive fluorescence probe were used to detect the expression of $GABA_A$ receptor subunits and $Cl^-$ influx in the primary cultured cerebellar granule cells. Honokiol (0.1 and 0.2 mg/kg) prolonged the sleeping time induced by pentobarbital (42 mg/kg) in a dosage-dependent manner. Honokiol (20 and 50 ${\mu}M$) increased $Cl^-$ influx in primary cultured cerebellar granule cells, and selectively increased the $GABA_A$ receptor $\alpha$-subunit expression, but had no effect on the abundance of $\beta$ or $\gamma$-subunits. Chronic treatment with 20 ${\mu}M$ honokiol in primary cultured cerebellar neurons did not affect the abundance of GAD65/67. The results suggested that honokiol could potentiate pentobarbital-induced sleeping through $GABA_A$ receptor $Cl^-$ channel activation.

Effect of Diet and Water Intake on Aquaporin 2 Function

  • Kim, Jun-Mo;Kim, Tae-Hee;Wang, Tong
    • Childhood Kidney Diseases
    • /
    • v.20 no.1
    • /
    • pp.11-17
    • /
    • 2016
  • Appropriate control of diet and water intake is important for maintaining normal blood pressure, fluid and electrolyte homeostasis in the body. It is relatively understood that the amount of sodium and potassium intake directly affects blood pressure and regulates ion transporters; Na and K channel functions in the kidney. However, little is known about whether diet and water intake regulates Aquaporin (AQP) function. AQPs, a family of aquaporin proteins with different types being expressed in different tissues, are important for water absorption by the cell. Water reabsorption is a passive process driven by osmotic gradient and water permeability is critical for this process. In most of the nephron, however, water reabsorption is unregulated and coupled to solute reabsorption, such as AQP1 mediated water absorption in the proximal tubule. AQP2 is the only water channel founded so far that can be regulated by hormones in the kidney. AQP2 expressed in the apical membrane of the principal cells in the collecting tubule can be regulated by vasopressin (antidiuretic hormone) controlling the final volume of urine excretion. When vasopressin binds to its receptor on the collecting duct cells, it stimulates the translocation of AQP2 to the membrane, leading to increased water absorption via this AQP2 water channel. However, some studies also indicated that the AQP2 is also been regulated by vasopressin independent mechanism. This review is focused on the regulation of AQP2 by diet and the amount of water intake on salt and water homeostasis.

A case of imipramine induced toxicity with Brugada electrocardiographic pattern in a toddler (Brugada 심전도 양상을 포함한 이미프라민에 의한 독성 부작용 1예)

  • Choi, Woo-Yeon;Park, Soo-Min;Han, Ui-Jeong;Kim, Young-Nam;Cho, Young-Kuk;Ma, Jae-Sook
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.11
    • /
    • pp.1232-1235
    • /
    • 2008
  • Imipramine, a tricyclic antidepressant (TCA), is used for the treatment of non-polar depression and nocturnal enuresis in children in whom an organic pathology has been excluded, anxiety disorders, and neuropathic pain. Clinical toxicity following the treatment of TCAs, including imipramine, is well known. The anticholinergic effects initially present include a dry mouth, ileus, dilated pupils, urinary retention, and mild sinus tachycardia. The central nervous system toxicity includes delirium, agitation, restlessness, hallucinations, convulsions, and CNS depression or coma. However, the most life-threatening toxicity remains the development of cardiac dysrhythmias. Conduction delays such as QRS and corrected QT prolongation, wide QRS complex tachycardia, and the Brugada electrocardiographic pattern have been reported. Sodium bicarbonate decreases QRS widening and suppresses dysrhythmias by providing excess sodium to reverse the TCA-induced sodium-channel blockade and possibly by binding directly to the myocardium. There are no pediatric case reports on imipramine or other TCA associated toxicity in Korea. Here, we describe a patient who presented with convulsions, tachycardia with a wide QRS complex, a Brugada electrocardiographic pattern, and anuresis associated with an accidental overdose of imipramine and the outcome of treatment with sodium bicarbonate.

MHD Pressure Drop of a Liquid-Metal Flow under a Transverse Magnetic Field (자기장하의 액체금속 유동의 차압 측정)

  • Cha, Jae-Eun;Kim, Hee-Reyoung;Kim, Jong-Man;Nam, Ho-Yoon;Kim, Sung-O;Kim, Byung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2638-2641
    • /
    • 2007
  • The magnetohydrodynamic(MHD) pressure drop along a liquid sodium flow was measured in a rectangular duct under a transverse magnetic field. The test section was made of a 3 mm thick stainless steel SUS304 with a $74{\times}5mm^2$ rectangular flow channel. The range of experimental parameters was roughly B=0${\sim}$0.18T and U=0${\sim}$0.9m/s at around $200^{\circ}C$. The differential pressure was measured by a diaphragm seal-type pressure transmitter filled with a high temperature silicon oil within 0.1MPa. The experimental results show a similar pressure drop with the theoretical estimation according to a change of the flow velocity and the magnetic field.

  • PDF