• Title/Summary/Keyword: social recommender system

Search Result 63, Processing Time 0.023 seconds

SRS: Social Correlation Group based Recommender System for Social IoT Environment

  • Kang, Deok-Hee;Choi, Hoan-Suk;Choi, Sang-Gyu;Rhee, Woo-Seop
    • International Journal of Contents
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2017
  • Recently, the Social Internet of Things (IoT), the follow-up of the IoT, has been studied to expand the existing IoT services, by integrating devices into the social network of people. In the Social IoT environment, humans, devices and digital contents are connected with social relationships, to guarantee the network navigability and establish levels of trustworthiness. However, this environment handles massive data, including social data of humans (e.g., profile, interest and relationship), profiles of IoT devices, and digital contents. Hence, users and service providers in the Social IoT are exposed to arbitrary data when searching for specific information. A study about the recommender system for the Social IoT environment is therefore needed, to provide the required information only. In this paper, we propose the Social correlation group based Recommender System (SRS). The SRS generates a target group, depending on the social correlation of the service requirement. To generate the target group, we have designed an architecture, and proposed a procedure of the SRS based on features of social interest similarity and principles of the Collaborative Filtering and the Content-based Recommender System. With simulation results of the target scenario, we present the possibility of the SRS to be adapted to various Social IoT services.

Toward Socially Agreeable Aggregate Functions for Group Recommender Systems (Group Recommender System을 위한 구성원 합의 도출 함수에 관한 연구)

  • Ok, Chang-Soo;Lee, Seok-Cheon;Jeong, Byung-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.4
    • /
    • pp.61-75
    • /
    • 2007
  • In ubiquitous computing, shared environments are required to adapt to people intelligently. Based on information about user preferences, the shared environments should be adjusted so that all users in a group are satisfied as possible. Although many group recommender systems have been proposed to obtain this purpose, they only consider average and misery. However, a broad range of philosophical approaches suggest that high inequality reduces social agreeability, and consequently causes users' dissatisfactions. In this paper, we propose social welfare functions, which consider inequalities in users' preferences, as alternative aggregation functions to achieve a social agreeability. Using an example in a previous work[7], we demonstrate the effectiveness of proposed welfare functions as socially agreeable aggregate functions in group recommender systems.

Design and Analysis a Robust Recommender System Exploiting the Effect of Social Trust Clusters (소셜 트러스트 클러스터 효과를 이용한 견고한 추천 시스템 설계 및 분석)

  • Noh, Giseop;Oh, Hayoung;Lee, Jaehoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.1
    • /
    • pp.241-248
    • /
    • 2018
  • A Recommender System (RS) is a system that provides optimized information to users in an over-supply situation. The key to RS is to accurately predict the behavior of the user. The Matrix Factorization (MF) method was used for this prediction in the early stage, and according to the recent SNS development, social information is additionally utilized to improve prediction accuracy. In this paper, we use RS internal trust cluster, which was overlooked in previous studies, to further improve performance and analyze the characteristics of trust clusters.

An Integrated Perspective of User Evaluating Personalized Recommender Systems : Performance-Driven or User-Centric (개인화 추천시스템의 사용자 평가에 대한 통합적 접근 : 시스템 성과와 사용자 태도를 기반으로)

  • Choi, Jae-Won;Lee, Hong-Joo
    • The Journal of Society for e-Business Studies
    • /
    • v.17 no.3
    • /
    • pp.85-103
    • /
    • 2012
  • This study focused on user evaluation for personalized recommender systems with the integrated view of performance of the system and user attitude of recommender systems. Since users' evaluations of recommender systems can be affected by recommendation outcomes and presentation methods, both system performances based on outcomes and user attitudes formed by the presentation methods should be considered when explaining users' evaluations. However, an integrated view of system performance and user attitudes has not been applied to explain users' evaluation of recommender systems. Thus, the goal of this study is to explain users' evaluations of recommender systems under the integrated view of predictive features and explanation features at the same time. Our findings suggest that social presence, both accuracy and noveltyhave impacts onuser satisfaction for recommender systems. Especially, predictive features including accuracy and novelty affected user satisfaction. Novelty as well as accuracy is one of the significant factors for user satisfaction while recommender systems provided usual items users have experienced when systems provide serendipitous items. Likewise, explanation features with social presence and self-reference were important for user evaluation of personalized recommender systems. For explanation features, while social presence appears as one of important factors to user satisfaction of evaluating personalized recommendations, self-reference has no significant effect on user's satisfaction for recommender systems when compared to the result of social presence. Self-referencing messages did not affect user satisfaction but the levels of self-referencing are different between low and high groups in the experiment.

A Literature Review and Classification of Recommender Systems on Academic Journals (추천시스템관련 학술논문 분석 및 분류)

  • Park, Deuk-Hee;Kim, Hyea-Kyeong;Choi, Il-Young;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.139-152
    • /
    • 2011
  • Recommender systems have become an important research field since the emergence of the first paper on collaborative filtering in the mid-1990s. In general, recommender systems are defined as the supporting systems which help users to find information, products, or services (such as books, movies, music, digital products, web sites, and TV programs) by aggregating and analyzing suggestions from other users, which mean reviews from various authorities, and user attributes. However, as academic researches on recommender systems have increased significantly over the last ten years, more researches are required to be applicable in the real world situation. Because research field on recommender systems is still wide and less mature than other research fields. Accordingly, the existing articles on recommender systems need to be reviewed toward the next generation of recommender systems. However, it would be not easy to confine the recommender system researches to specific disciplines, considering the nature of the recommender system researches. So, we reviewed all articles on recommender systems from 37 journals which were published from 2001 to 2010. The 37 journals are selected from top 125 journals of the MIS Journal Rankings. Also, the literature search was based on the descriptors "Recommender system", "Recommendation system", "Personalization system", "Collaborative filtering" and "Contents filtering". The full text of each article was reviewed to eliminate the article that was not actually related to recommender systems. Many of articles were excluded because the articles such as Conference papers, master's and doctoral dissertations, textbook, unpublished working papers, non-English publication papers and news were unfit for our research. We classified articles by year of publication, journals, recommendation fields, and data mining techniques. The recommendation fields and data mining techniques of 187 articles are reviewed and classified into eight recommendation fields (book, document, image, movie, music, shopping, TV program, and others) and eight data mining techniques (association rule, clustering, decision tree, k-nearest neighbor, link analysis, neural network, regression, and other heuristic methods). The results represented in this paper have several significant implications. First, based on previous publication rates, the interest in the recommender system related research will grow significantly in the future. Second, 49 articles are related to movie recommendation whereas image and TV program recommendation are identified in only 6 articles. This result has been caused by the easy use of MovieLens data set. So, it is necessary to prepare data set of other fields. Third, recently social network analysis has been used in the various applications. However studies on recommender systems using social network analysis are deficient. Henceforth, we expect that new recommendation approaches using social network analysis will be developed in the recommender systems. So, it will be an interesting and further research area to evaluate the recommendation system researches using social method analysis. This result provides trend of recommender system researches by examining the published literature, and provides practitioners and researchers with insight and future direction on recommender systems. We hope that this research helps anyone who is interested in recommender systems research to gain insight for future research.

Dynamic Recommender on User Taste Tendency Model : Focusing on Movie Recommender System (사용자 경향에 기반한 동적 추천 기법 : 영화 추천 시스템을 중심으로)

  • 이수정;이형동;김형주
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.153-163
    • /
    • 2004
  • Many recommender systems are based on Content-based Filtering and Social Filtering Both methods have their own advantages and disadvantages, and they complement each other rather than compete. So incorporating of both methods can make the better system and combination technique controls the quality of the entire recommender system. In this paper, we presented each user has his own tendency to decide which is the better recommendation for himself among the various recommendation results, and suggested the Personalized combination technique. To represent user tendency, we defined and used loyalty, diversity and pioneerity and showed by experiments that our combination technique is useful. This combination technique improved the average coverage 23% and for the ceiling 40%.

The Effects of Customer Product Review on Social Presence in Personalized Recommender Systems (개인화 추천시스템에서 고객 제품 리뷰가 사회적 실재감에 미치는 영향)

  • Choi, Jae-Won;Lee, Hong-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.115-130
    • /
    • 2011
  • Many online stores bring features that can build trust in their customers. More so, the number of products or content services on online stores has been increasing rapidly. Hence, personalization on online stores is considered to be an important technology to companies and customers. Recommender systems that provide favorable products and customer product reviews to users are the most commonly used features in this purpose. There are many studies to that investigated the relationship between social presence as an antecedent of trust and provision of recommender systems or customer product reviews. Many online stores have made efforts to increase perceived social presence of their customers through customer reviews, recommender systems, and analyzing associations among products. Primarily because social presence can increase customer trust or reuse intention for online stores. However, there were few studies that investigated the interactions between recommendation type, product type and provision of customer product reviews on social presence. Therefore, one of the purposes of this study is to identify the effects of personalized recommender systems and compare the role of customer reviews with product types. This study performed an experiment to see these interactions. Experimental web pages were developed with $2{\times}2$ factorial setting based on how to provide social presence to users with customer reviews and two product types such as hedonic and utilitarian. The hedonic type was a ringtone chosen from Nate.com while the utilitarian was a TOEIC study aid book selected from Yes24.com. To conduct the experiment, web based experiments were conducted for the participants who have been shopping on the online stores. Participants were a total of 240 and 30% of the participants had the chance of getting the presents. We found out that social presence increased for hedonic products when personalized recommendations were given compared to non.personalized recommendations. Although providing customer reviews for two product types did not significantly increase social presence, provision of customer product reviews for hedonic (ringtone) increased perceived social presence. Otherwise, provision of customer product reviews could not increase social presence when the systems recommend utilitarian products (TOEIC study.aid books). Therefore, it appears that the effects of increasing perceived social presence with customer reviews have a difference for product types. In short, the role of customer reviews could be different based on which product types were considered by customers when they are making a decision related to purchasing on the online stores. Additionally, there were no differences for increasing perceived social presence when providing customer reviews. Our participants might have focused on how recommendations had been provided and what products were recommended because our developed systems were providing recommendations after participants rating their preferences. Thus, the effects of customer reviews could appear more clearly if our participants had actual purchase opportunity for the recommendations. Personalized recommender systems can increase social presence of customers more than nonpersonalized recommender systems by using user preference. Online stores could find out how they can increase perceived social presence and satisfaction of their customers when customers want to find the proper products with recommender systems and customer reviews. In addition, the role of customer reviews of the personalized recommendations can be different based on types of the recommended products. Even if this study conducted two product types such as hedonic and utilitarian, the results revealed that customer reviews for hedonic increased social presence of customers more than customer reviews for utilitarian. Thus, online stores need to consider the role of providing customer reviews with highly personalized information based on their product types when they develop the personalized recommender systems.

Topic Modeling-based Book Recommendations Considering Online Purchase Behavior (온라인 구매 행태를 고려한 토픽 모델링 기반 도서 추천)

  • Jung, Youngjin;Cho, Yoonho
    • Knowledge Management Research
    • /
    • v.18 no.4
    • /
    • pp.97-118
    • /
    • 2017
  • Thanks to the development of social media, general users become information and knowledge providers. But customers also feel difficulty to decide their purchases due to numerous information. Although recommender systems are trying to solve these information/knowledge overload problem, it may be asked whether they can honestly reflect customers' preferences. Especially, customers in book market consider contents of a book, recency, and price when they make a purchase. Therefore, in this study, we propose a methodology which can reflect these characteristics based on topic modeling and provide proper recommendations to customers in book market. Through experiments, our methodology shows higher performance than traditional collaborative filtering systems. Therefore, we expect that our book recommender system contributes the development of recommender systems studies and positively affect the customer satisfaction and management.

U-Net-based Recommender Systems for Political Election System using Collaborative Filtering Algorithms

  • Nidhi Asthana;Haewon Byeon
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2024
  • User preferences and ratings may be anticipated by recommendation systems, which are widely used in social networking, online shopping, healthcare, and even energy efficiency. Constructing trustworthy recommender systems for various applications, requires the analysis and mining of vast quantities of user data, including demographics. This study focuses on holding elections with vague voter and candidate preferences. Collaborative user ratings are used by filtering algorithms to provide suggestions. To avoid information overload, consumers are directed towards items that they are more likely to prefer based on the profile data used by recommender systems. Better interactions between governments, residents, and businesses may result from studies on recommender systems that facilitate the use of e-government services. To broaden people's access to the democratic process, the concept of "e-democracy" applies new media technologies. This study provides a framework for an electronic voting advisory system that uses machine learning.

Social Network Analysis for the Effective Adoption of Recommender Systems (추천시스템의 효과적 도입을 위한 소셜네트워크 분석)

  • Park, Jong-Hak;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.305-316
    • /
    • 2011
  • Recommender system is the system which, by using automated information filtering technology, recommends products or services to the customers who are likely to be interested in. Those systems are widely used in many different Web retailers such as Amazon.com, Netfix.com, and CDNow.com. Various recommender systems have been developed. Among them, Collaborative Filtering (CF) has been known as the most successful and commonly used approach. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. However, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting in advance whether the performance of CF recommender system is acceptable or not is practically important and needed. In this study, we propose a decision making guideline which helps decide whether CF is adoptable for a given application with certain transaction data characteristics. Several previous studies reported that sparsity, gray sheep, cold-start, coverage, and serendipity could affect the performance of CF, but the theoretical and empirical justification of such factors is lacking. Recently there are many studies paying attention to Social Network Analysis (SNA) as a method to analyze social relationships among people. SNA is a method to measure and visualize the linkage structure and status focusing on interaction among objects within communication group. CF analyzes the similarity among previous ratings or purchases of each customer, finds the relationships among the customers who have similarities, and then uses the relationships for recommendations. Thus CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. Under the assumption that SNA could facilitate an exploration of the topological properties of the network structure that are implicit in transaction data for CF recommendations, we focus on density, clustering coefficient, and centralization which are ones of the most commonly used measures to capture topological properties of the social network structure. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. We explore how these SNA measures affect the performance of CF performance and how they interact to each other. Our experiments used sales transaction data from H department store, one of the well?known department stores in Korea. Total 396 data set were sampled to construct various types of social networks. The dependant variable measuring process consists of three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used UCINET 6.0 for SNA. The experiments conducted the 3-way ANOVA which employs three SNA measures as dependant variables, and the recommendation accuracy measured by F1-measure as an independent variable. The experiments report that 1) each of three SNA measures affects the recommendation accuracy, 2) the density's effect to the performance overrides those of clustering coefficient and centralization (i.e., CF adoption is not a good decision if the density is low), and 3) however though the density is low, the performance of CF is comparatively good when the clustering coefficient is low. We expect that these experiment results help firms decide whether CF recommender system is adoptable for their business domain with certain transaction data characteristics.