Abstract
Many recommender systems are based on Content-based Filtering and Social Filtering Both methods have their own advantages and disadvantages, and they complement each other rather than compete. So incorporating of both methods can make the better system and combination technique controls the quality of the entire recommender system. In this paper, we presented each user has his own tendency to decide which is the better recommendation for himself among the various recommendation results, and suggested the Personalized combination technique. To represent user tendency, we defined and used loyalty, diversity and pioneerity and showed by experiments that our combination technique is useful. This combination technique improved the average coverage 23% and for the ceiling 40%.
대부분의 추천 시스템에서는 개인의 선호 정보를 바탕으로 한 내용-기반 추천 기법과 다른 사람들로부터의 추천을 기반으로 한 사회적 추천 기법을 사용한다. 이들 두 기법은 각각 장단점을 갖고 있으며, 서로 경쟁 관계에 있다기보다 상호 보완적인 성격을 갖고 있다. 이에 두 기법의 적절한 조합이 전체 추천 시스템의 질을 결정하는 관건이 된다. 본 논문에서는 사용자 개인마다 각 기법에 대한 만족도와 의존도가 다름을 밝히고, 이러한 각 개인의 경향에 따라 여러 추천 기법의 결과를 개인별로 조합해 주는 기법을 제안하였다. 각 개인의 경향을 나타내는 척도로 충성도, 다양도, 전문가도 둥의 척도를 정의하여 사용하였으며, 이 원리에 의해 동작하는 조합 엔진의 결과는 최고 40%, 평균 23%의 coverage 개선 효과를 나타내었다.