• Title/Summary/Keyword: social graph

Search Result 162, Processing Time 0.022 seconds

Visualizing Geographical Contexts in Social Networks

  • Lee, Yang-Won;Kim, Hyung-Joo
    • Spatial Information Research
    • /
    • v.14 no.4 s.39
    • /
    • pp.391-401
    • /
    • 2006
  • We propose a method for geographically enhanced representation of social networks and implement a Web-based 3D visualization of geographical contexts in social networks. A renovated social network graph is illustrated by using two key components: (i) GWCMs (geographically weighted centrality measures) that reflect the differences in interaction intensity and spatial proximity among nodes and (ii) MSNG (map-integrated social network graph) that incorporates the GWCMs and the geographically referenced arrangement of nodes on a choroplethic map. For the integrated 3D visualization of the renovated social network graph, we employ X3D (Extensible 3D), a standard 3D authoring tool for the Web. An experimental case study of regional R&D collaboration provides a visual clue to geographical contexts in social networks including how the social centralization relates to spatial centralization.

  • PDF

An Efficient Large Graph Clustering Technique based on Min-Hash (Min-Hash를 이용한 효율적인 대용량 그래프 클러스터링 기법)

  • Lee, Seok-Joo;Min, Jun-Ki
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.380-388
    • /
    • 2016
  • Graph clustering is widely used to analyze a graph and identify the properties of a graph by generating clusters consisting of similar vertices. Recently, large graph data is generated in diverse applications such as Social Network Services (SNS), the World Wide Web (WWW), and telephone networks. Therefore, the importance of graph clustering algorithms that process large graph data efficiently becomes increased. In this paper, we propose an effective clustering algorithm which generates clusters for large graph data efficiently. Our proposed algorithm effectively estimates similarities between clusters in graph data using Min-Hash and constructs clusters according to the computed similarities. In our experiment with real-world data sets, we demonstrate the efficiency of our proposed algorithm by comparing with existing algorithms.

Efficient Query Retrieval from Social Data in Neo4j using LIndex

  • Mathew, Anita Brigit
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2211-2232
    • /
    • 2018
  • The unstructured and semi-structured big data in social network poses new challenges in query retrieval. This requirement needs to be met by introducing quality retrieval time measures like indexing. Due to the huge volume of data storage, there originate the need for efficient index algorithms to promote query processing. However, conventional algorithms fail to index the huge amount of frequently obtained information in real time and fall short of providing scalable indexing service. In this paper, a new LIndex algorithm, which is a heuristic on Lucene is built on Neo4jHA architecture that holds the social network Big data. LIndex is a flexible and simplified adaptive indexing scheme that ascendancy decomposed shortest paths around term neighbors as basic indexing unit. This newfangled index proves to be effectual in query space pruning of graph database Neo4j, scalable in index construction and deployment. A graph query is processed and optimized beyond the traditional Lucene in a time-based manner to a more efficient path method in LIndex. This advanced algorithm significantly reduces query fetch without compromising the quality of results in time. The experiments are conducted to confirm the efficiency of the proposed query retrieval in Neo4j graph NoSQL database.

Anonymizing Graphs Against Weight-based Attacks with Community Preservation

  • Li, Yidong;Shen, Hong
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.3
    • /
    • pp.197-209
    • /
    • 2011
  • The increasing popularity of graph data, such as social and online communities, has initiated a prolific research area in knowledge discovery and data mining. As more real-world graphs are released publicly, there is growing concern about privacy breaching for the entities involved. An adversary may reveal identities of individuals in a published graph, with the topological structure and/or basic graph properties as background knowledge. Many previous studies addressing such attacks as identity disclosure, however, concentrate on preserving privacy in simple graph data only. In this paper, we consider the identity disclosure problem in weighted graphs. The motivation is that, a weighted graph can introduce much more unique information than its simple version, which makes the disclosure easier. We first formalize a general anonymization model to deal with weight-based attacks. Then two concrete attacks are discussed based on weight properties of a graph, including the sum and the set of adjacent weights for each vertex. We also propose a complete solution for the weight anonymization problem to prevent a graph from both attacks. In addition, we also investigate the impact of the proposed methods on community detection, a very popular application in the graph mining field. Our approaches are efficient and practical, and have been validated by extensive experiments on both synthetic and real-world datasets.

A Reply Graph-based Social Mining Method with Topic Modeling (토픽 모델링을 이용한 댓글 그래프 기반 소셜 마이닝 기법)

  • Lee, Sang Yeon;Lee, Keon Myung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.640-645
    • /
    • 2014
  • Many people use social network services as to communicate, to share an information and to build social relationships between others on the Internet. Twitter is such a representative service, where millions of tweets are posted a day and a huge amount of data collection has been being accumulated. Social mining that extracts the meaningful information from the massive data has been intensively studied. Typically, Twitter easily can deliver and retweet the contents using the following-follower relationships. Topic modeling in tweet data is a good tool for issue tracking in social media. To overcome the restrictions of short contents in tweets, we introduce a notion of reply graph which is constructed as a graph structure of which nodes correspond to users and of which edges correspond to existence of reply and retweet messages between the users. The LDA topic model, which is a typical method of topic modeling, is ineffective for short textual data. This paper introduces a topic modeling method that uses reply graph to reduce the number of short documents and to improve the quality of mining results. The proposed model uses the LDA model as the topic modeling framework for tweet issue tracking. Some experimental results of the proposed method are presented for a collection of Twitter data of 7 days.

A study on the detection of fake news - The Comparison of detection performance according to the use of social engagement networks (그래프 임베딩을 활용한 코로나19 가짜뉴스 탐지 연구 - 사회적 참여 네트워크의 이용 여부에 따른 탐지 성능 비교)

  • Jeong, Iitae;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.197-216
    • /
    • 2022
  • With the development of Internet and mobile technology and the spread of social media, a large amount of information is being generated and distributed online. Some of them are useful information for the public, but others are misleading information. The misleading information, so-called 'fake news', has been causing great harm to our society in recent years. Since the global spread of COVID-19 in 2020, much of fake news has been distributed online. Unlike other fake news, fake news related to COVID-19 can threaten people's health and even their lives. Therefore, intelligent technology that automatically detects and prevents fake news related to COVID-19 is a meaningful research topic to improve social health. Fake news related to COVID-19 has spread rapidly through social media, however, there have been few studies in Korea that proposed intelligent fake news detection using the information about how the fake news spreads through social media. Under this background, we propose a novel model that uses Graph2vec, one of the graph embedding methods, to effectively detect fake news related to COVID-19. The mainstream approaches of fake news detection have focused on news content, i.e., characteristics of the text, but the proposed model in this study can exploit information transmission relationships in social engagement networks when detecting fake news related to COVID-19. Experiments using a real-world data set have shown that our proposed model outperforms traditional models from the perspectives of prediction accuracy.

Malware Containment Using Weight based on Incremental PageRank in Dynamic Social Networks

  • Kong, Jong-Hwan;Han, Myung-Mook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.421-433
    • /
    • 2015
  • Recently, there have been fast-growing social network services based on the Internet environment and web technology development, the prevalence of smartphones, etc. Social networks also allow the users to convey the information and news so that they have a great influence on the public opinion formed by social interaction among users as well as the spread of information. On the other hand, these social networks also serve as perfect environments for rampant malware. Malware is rapidly being spread because relationships are formed on trust among the users. In this paper, an effective patch strategy is proposed to deal with malicious worms based on social networks. A graph is formed to analyze the structure of a social network, and subgroups are formed in the graph for the distributed patch strategy. The weighted directions and activities between the nodes are taken into account to select reliable key nodes from the generated subgroups, and the Incremental PageRanking algorithm reflecting dynamic social network features (addition/deletion of users and links) is used for deriving the high influential key nodes. With the patch based on the derived key nodes, the proposed method can prevent worms from spreading over social networks.

Development of Product Recommendation System Using MultiSAGE Model and ESG Indicators (MultiSAGE 모델과 ESG 지표를 적용한 상품 추천 시스템 개발)

  • Hyeon-woo Kim;Yong-jun Kim;Gil-sang Yoo
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.69-78
    • /
    • 2024
  • Recently, consumers have shown an increasing tendency to seek information related to environmental, social, and governance (ESG) aspects in order to choose products with higher social value and environmental friendliness. In this paper, we proposes a product recommendation system applying ESG indicators tailored to the recent consumer trend of value-based consumption, utilizing a model called MultiSAGE that combines GraphSAGE and GAT. To achieve this, ESG rating data for 1,033 companies in 2022 collected from the Korea ESG Standard Institute and actual product data from N companies were transformed into a Heterogeneous Graph format through a data processing pipeline. The MultiSAGE model was then applied in machine learning to implement a recommendation system that, given a specific product, suggests eco-friendly alternatives. The implementation results indicate that consumers can easily compare and purchase products with ESG indicators applied, and it is anticipated that this system will be utilized in recommending products with social value and environmental friendliness.

Finding Top-k Answers in Node Proximity Search Using Distribution State Transition Graph

  • Park, Jaehui;Lee, Sang-Goo
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.714-723
    • /
    • 2016
  • Considerable attention has been given to processing graph data in recent years. An efficient method for computing the node proximity is one of the most challenging problems for many applications such as recommendation systems and social networks. Regarding large-scale, mutable datasets and user queries, top-k query processing has gained significant interest. This paper presents a novel method to find top-k answers in a node proximity search based on the well-known measure, Personalized PageRank (PPR). First, we introduce a distribution state transition graph (DSTG) to depict iterative steps for solving the PPR equation. Second, we propose a weight distribution model of a DSTG to capture the states of intermediate PPR scores and their distribution. Using a DSTG, we can selectively follow and compare multiple random paths with different lengths to find the most promising nodes. Moreover, we prove that the results of our method are equivalent to the PPR results. Comparative performance studies using two real datasets clearly show that our method is practical and accurate.

Comparison of graph clustering methods for analyzing the mathematical subject classification codes

  • Choi, Kwangju;Lee, June-Yub;Kim, Younjin;Lee, Donghwan
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.5
    • /
    • pp.569-578
    • /
    • 2020
  • Various graph clustering methods have been introduced to identify communities in social or biological networks. This paper studies the entropy-based and the Markov chain-based methods in clustering the undirected graph. We examine the performance of two clustering methods with conventional methods based on quality measures of clustering. For the real applications, we collect the mathematical subject classification (MSC) codes of research papers from published mathematical databases and construct the weighted code-to-document matrix for applying graph clustering methods. We pursue to group MSC codes into the same cluster if the corresponding MSC codes appear in many papers simultaneously. We compare the MSC clustering results based on the several assessment measures and conclude that the Markov chain-based method is suitable for clustering the MSC codes.