• 제목/요약/키워드: snubber circuit

검색결과 242건 처리시간 0.02초

무손실 스너버 회로를 이용한 소프트 스위칭 강압형 고역률 컨버터 (Soft switching high power factor buck converter using loss less snubber circuit)

  • 구헌회;변영복;김성철;서기영;이현우
    • 전자공학회논문지S
    • /
    • 제34S권6호
    • /
    • pp.77-84
    • /
    • 1997
  • buck type converter doesn't appear when an input voltag eis lower than an output voltage. This is the main reason the buck converter has not been used for high power factor converters. In this paper, soft switching high power factor buck converter is proposed. This converter is composed of diode rectifier, input capacitor can be small enough to filter input current, buck converter with loss less snubber circuit. Converter is operated in discontinous conduction mode, turn on of the switching device is a zero current switching (ZCS) and high powr factor input is obtianed. In addition, zero voltage switching (ZVS) at trun off is achieved and switching loss is reduced using loss less snubber circuit. The capacitor used in the snubber circuit raised output voltage. Therefore, proposed converter has higher output voltage and higher efficiency than conventional buck type converter at same duty factor in discontinous conduction mode operation. High power factro, efficiency, soft switching operation of proposed converter is veified by simulation using Pspice and experimental results.

  • PDF

스너버 회로를 위한 TVS 소자의 활용 연구 (A Study on the application of TVS for snubber)

  • 이완윤;정교범
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 추계학술대회 논문집
    • /
    • pp.227-230
    • /
    • 2002
  • The switching device in an inductive circuit is stressed by the over-voltage at the turn-off time. Thus if the peak value of the over-voltage is not properly limited, the switching device may be broken. Therefore, the snubber circuit should be added to protect the switching device from the over-voltage. The circuit designer must be familiar with the design of the snubber This paper tests the possibility that TVS instead of the conventional snubber can be applied to the protection circuit of the switching device without using the complicated design equations, and shows that the rating of TVS can be easily selected by considering only several parameters of TVS. The experimental results show the reduced switching voltage of the switching device at the turn-off time.

  • PDF

PWM Cuk AC-AC 컨버터를 위한 Undeland 스너버 (Undeland Snubber for PWM Cuk AC-AC Converter)

  • 최남섭;김인동;노의철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.275-277
    • /
    • 2006
  • This paper proposes a snubber circuit for a PWM Cuk AC-AC converter. The proposed snubber makes use of an Undeland snubber as a commutation aids. So the snubber keeps such good features as small count of snubber elements, reduction of voltage/current stress of main switching devices and improved efficiency. This paper shows simulation results to verify the adaptability and feasibility of the proposed snubber.

  • PDF

PWM 인버터용 SNUBBER 설계 (Design of Snubber for PWM Inverter)

  • 오진석
    • 한국안전학회지
    • /
    • 제8권4호
    • /
    • pp.95-100
    • /
    • 1993
  • In power transistor switching circuit have shunt snubber(dv/dt limiting capacitor) and series snubber (di/dt limiting inductor). The shunt snubber is used to reduce the turn-off switching loss and the series snubber is used to reduce the turn-on switching loss. Design procedures are derived for selecting the capacitance, inductor and resistance to limit the peak voltage and current values. The action of snubber is analyzed and applied to the design for safety PWM inverter.

  • PDF

Magnetic Design of Flyback Type Snubber for IGCT Applications

  • Shirmohammadi, Siamak;Lama, Amreena;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.367-368
    • /
    • 2016
  • 10kV IGCT has been recently developed and has the potential to push wind turbine systems to higher power and voltage rating. Converters employing IGCTs need snubber and OVP circuit to limit the rate of current's rising and peak over voltage across IGCT during turn on and off state, respectively. The conventional RCD snubber which is used in such power converter dissipates a significant amount of power. In order to reduce the amount of energy lost by conventional RCD snubber, this paper proposes flyback type snubber comprising two coils wound on a magnetic core. The flyback snubber not only meets all of the IGCTs characteristics during on and off-state but also significantly saves the power loss. Modern magnetic model using permeance-capacitance analogy leads to more accurate loss analysis of flyback type di/dt snubber circuit in 3-level NPC type back-to-back VSC. In turns, the comparison between conventional and flyback type snubber yield the effectiveness of proposed snubber in wind turbine systems.

  • PDF

PWM Cuk AC-AC 컨버터를 위한 새로운 Commutation 회로 (A New Commutation Circuit for PMW Cuk AC-AC Converter)

  • 최남섭;김인동;이옥룡;노의철
    • 전력전자학회논문지
    • /
    • 제11권5호
    • /
    • pp.431-439
    • /
    • 2006
  • 본 논문에서는 PMW Cuk AC-AC 컨버터를 위한 새로운 commutation 회로를 제안한다. 제안된 commutation 회로는 컨버터 전류의 commutation을 위하여 개선된 Undeland 스너버를 이용한다. 개선된 스너버 회로는 주 스위치의 전압/전류 스트레스 저감, 효율 개선과 같은 장점을 갖는다. 본 논문에서는 실험을 통하여 제안된 commutation 회로의 효과와 적용 가능성을 확인하였다.

Improved Single-Stage AC-DC LED-Drive Flyback Converter using the Transformer-Coupled Lossless Snubber

  • Jeong, Gang-Youl;Kwon, Su-Han
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.644-652
    • /
    • 2016
  • This paper presents an improved single-stage ac-dc LED-drive flyback converter using the transformer-coupled lossless (TCL) snubber. The proposed converter is derived from the integration of a full-bridge diode rectifier and a conventional flyback converter with a simple TCL snubber. The TCL snubber circuit is composed of only two diodes, a capacitor, and a transformer-coupled auxiliary winding. The TCL snubber limits the surge voltage of the switch and regenerates the energy stored in the leakage inductance of the transformer. Also, the switch of the proposed converter is turned on at a minimum voltage using a formed resonant circuit. Thus, the proposed converter achieves high efficiency. The proposed converter utilizes only one general power factor correction (PFC) control IC as its controller and performs both PFC and output power regulation, simultaneously. Therefore, the proposed converter provides a simple structure and an economic implementation and achieves a high power factor without the need for any separate PFC circuit. In this paper, the operational principle of the proposed converter is explained in detail and the design guideline of the proposed converter is briefly shown. Experimental results for a 40-W prototype are shown to validate the performance of the proposed converter.

다이리스터의 Turn-off 모델을 이용한 최적 Snubber 회로 설계 (Design of an Optimum Thyristor Snubber Circuit with Turn-off Model)

  • 김권호;문영현;송중호;최익;김광배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.773-776
    • /
    • 1993
  • The thyristor turn-off model plays an important part in the design of thyristor snubber circuit. However, it is difficult to determine the thyristor turn-off characteristics. In this paper two methods to establish the simple thyristor turn-off model are proposed based on the reverse recovery characteristics given in the data sheets. Using the simple thyristor turn-off model, the optimum thyristor snubber circuit design procedures are presented considering maximum voltage spike, maximum reverse dv/dt, and turn-off loss.

  • PDF

Two-Switch Auxiliary Resonant DC Link Snubber-Assisted Three-Phase Soft Switching PWM Sinewave Power Conversion System with Minimized Commutation Power Losses

  • Nagai, Shinichiro;Sato, Shinji;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제3권4호
    • /
    • pp.249-258
    • /
    • 2003
  • This paper presents a high-efficient and cost effective three-phase AC/DC-DC/AC power conversion system with a single two-switch type active Auxiliary Resonant DC Link (ARDCL) snubber circuit, which can minimize the total power dissipation. The active ARDCL snubber circuit is proposed in this paper and its unique features are described. Its operation principle in steady-state is discussed for the three phase AC/DC-DC/AC converter, which is composed of PWM rectifier as power factor correction (PFC) converter, sinewave PWM inverter. In the presented power converter system not only three-phase AC/DC PWM rectifier but also three-phase DC/AC inverter can achieve the stable ZVS commutation for all the power semiconductor devices. It is proved that the proposed three-phase AC/DC-DC/AC converter system is more effective and acceptable than the previous from the cost viewpoint and high efficient consideration. In addition, the proposed two-switch type active auxiliary ARDCL snubber circuit can reduce the peak value of the resonant inductor injection current in order to maximize total system actual efficiency by using the improved DSP based control scheme. Moreover the proposed active auxiliary two-switch ARDCL snubber circuit has the merit so that there is no need to use any sensing devices to detect the voltage and current in the ARDCL sunbber circuit for realizing soft-switching operation. This three-phase AC/DC-DC/AC converter system developed for UPS can achieve the 1.8% higher efficiency and 20dB lower conduction noise than those of the conventional three-phase hard-switching PWM AC/DC-DC/AC converter system. It is proved that actual efficiency of the proposed three-phase AC/DC-DC/AC converter system operating under a condition of soft switching is 88.7% under 10kw output power.

Lossless Snubber with Minimum Voltage Stress for Continuous Current Mode Tapped-Inductor Boost Converters for High Step-up Applications

  • Kang, Jeong-Il;Han, Sang-Kyoo;Han, Jonghee
    • Journal of Power Electronics
    • /
    • 제14권4호
    • /
    • pp.621-631
    • /
    • 2014
  • To invigorate the tapped-inductor boost (TIB) topology in emerging high step-up applications for off-grid products, a lossless snubber consisting of two capacitors and three diodes is proposed. Since the switch voltage stress is minimized in the proposed circuit, it is allowed to use a device with a lower cost, higher efficiency, and higher availability. Moreover, since the leakage inductance is fully utilized, no effort to minimize it is required. This allows for a highly productive and cost-effective design of the tapped-inductor. The proposed circuit also shows a high step-up ratio and provides relaxation of the switching loss and diode reverse-recovery. In this paper, the operation is analyzed in detail, the steady-state equation is derived, and the design considerations are discussed. Some experimental results are provided to confirm the validity of the proposed circuit.