• Title/Summary/Keyword: snow ice

Search Result 123, Processing Time 0.026 seconds

A Case Study on Meteorological Analysis of Freezing Rain and Black Ice Formation on the Load at Winter (겨울철 노면에 발생하는 어는 비와 블랙아이스의 기상학적 분석에 관한 사례 연구)

  • Park, Geun-Yeong;Lee, Soon-Hwan;Kim, Eun-Ji;Yun, Byeong Yeong
    • Journal of Environmental Science International
    • /
    • v.26 no.7
    • /
    • pp.827-836
    • /
    • 2017
  • Freezing rain is a phenomenon when precipitation falls as a liquid rain drop, but freezes when it comes into contact with surfaces or objects. In this study, we investigated the predictability of freezing rain and its characteristics, which are strongly related with the occurrence of black ice using synoptic scale meteorological observation data. Two different cases occurred at 2012 were analyzed and in the presented cases, freezing rain often occurs in the low-level low pressure with the warm front. The warm front due to the lower cyclone make suitable environment in which snow falling from the upper layer can change into supercooled water. The $0^{\circ}C$ temperature line to generate supercooling water is located at an altitude of 850 hPa in the vertical temperature distribution. And the ground temperature remained below zero, as is commonly known as a condition for black ice formation. It is confirmed that the formation rate of freezing rain is higher when the thickness after 1000-850 hPa is 1290-1310 m and the thickness of 850-700 hPa layer is larger than 1540 m in both cases. It can also be used to predict and estimate the generation of freezing rain by detecting and analyzing bright bands in radar observation.

Real-time Road Surface Recognition and Black Ice Prevention System for Asphalt Concrete Pavements using Image Analysis (실시간 영상이미지 분석을 통한 아스팔트 콘크리트 포장의 노면 상태 인식 및 블랙아이스 예방시스템)

  • Hoe-Pyeong Jeong;Homin Song;Young-Cheol Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.82-89
    • /
    • 2024
  • Black ice is very difficult to recognize and reduces the friction of the road surface, causing automobile accidents. Since black ice is difficult to detect, there is a need for a system that identifies black ice in real time and warns the driver. Various studies have been conducted to prevent black ice on road surfaces, but there is a lack of research on systems that identify black ice in real time and warn drivers. In this paper, an real-time image-based analysis system was developed to identify the condition of asphalt road surface, which is widely used in Korea. For this purpose, a dataset was built for each asphalt road surface image, and then the road surface condition was identified as dry, wet, black ice, and snow using deep learning. In addition, temperature and humidity data measured on the actual road surface were used to finalize the road surface condition. When the road surface was determined to be black ice, the salt spray equipment installed on the road was automatically activated. The surface condition recognition system for the asphalt concrete pavement and black ice automatic prevention system developed in this study are expected to ensure safe driving and reduce the incidence of traffic accidents.

A Development of The Road Surface Decision Algorithm Using SVM(Support Vector Machine) Clustering Methods (SVM(Support Vector Machine) 기법을 활용한 노면상태 판별 알고리즘 개발)

  • Kim, Jong Hoon;Won, Jae Moo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.5
    • /
    • pp.1-12
    • /
    • 2013
  • Road's accidents caused by Ice, snow, Wet of roads surface conditions and weather conditions situations that are constantly occurring. That is, driver's negligence and safe driving ability of individuals due to lack of awareness, and Road management main agent(the government and the public, etc.) due to road conditions, if there is insufficient information. So Related research needs is a trend that is required. In this study, gather Camera(Stereo camera)'s image data, and analysis polarization coefficients and wavelet transform. And unlike traditional single-dimensional classification algorithms as multi-dimensional analysis by using SVM classification techniques, develop an algorithm to determine road conditions. Four on the road conditions (dry, wet, snow, ice) recognition success rate for the detection and analysis of experiments.

Deicing Performance of Environment-friendly Deicing Agents (친환경 제설제인 CMO의 성능평가 분석)

  • Lee, Seung-Woo;Woo, Chang-Wan;Kim, Jong-Oh;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.53-62
    • /
    • 2005
  • Efficient snow-removing work is one of important processes of winter road management. Calcium chloride has been used as a typical deicing agent in Korea. It presents superial performance as snow deicing agents, however it has been known to give serious environmental problem and to deteriorate durability of concrete structure in road by corrosion. The environment-friendly road deicing agents made from the waste material which is liquid phase organic matter that is Ca Mg and reactant of organic acid (nitric acid and propionic acid) have been introduced by number of researchers. They indicated the calcium magnesium salt of organic acids have advantage over the calcium choride in terms of lower production unit cost by resources recycling and can solve environmental problem and durability deterioration of structures. In this study, the deicing performance of calcium magnesium salt of organic acids(CMO) is investigated based on the series of experiments including the test for heat of dissolution, freezing point, ice melting test and ice penetration test.

  • PDF

A Study on the Establishment of a System in the Environmental Chamber for Extreme Environment Performance Test (극한 환경 성능시험을 위한 환경챔버 내 시스템 구축에 관한 연구)

  • Ki-Young Sung;Seong-Jong Han;Jung-Won Lee;Jung Hee Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.5
    • /
    • pp.1227-1236
    • /
    • 2024
  • This paper is a basic test study for the performance verification of equipment and facilities used in extreme environmental conditions, and includes research using a chamber that can artificially create a low-temperature environment. The facility can create a temperature environment from room temperature to -65℃ and is constructed to create special environments such as wind speed, artificial snow removal, and artificial ice removal. By artificially creating a polar environment below -40℃ and verifying it through installation and preliminary performance tests of the equipment, it is possible to identify potential risk factors that may occur at the work site in advance and prepare for safety accidents. The temperature distribution was observed when descending to a low temperature in a limited space in the chamber, and how the flow changes when the wind speed is applied. Based on this study, we plan to analyze the effects of implementing special environments such as artificial snow removal and artificial ice removal in the future.

The Physio-Chemical Characteristics of Aerosol in Urban Area During Snowfall (강설시 도심지역 에어러솔의 물리.화학적 특성)

  • 김민수;이동인;유철환
    • Journal of Environmental Science International
    • /
    • v.10 no.3
    • /
    • pp.201-208
    • /
    • 2001
  • To investigate the physio-chemical components and properties of aerosol particles in urban area sampling of aerosol particles was carried out in the campus of Hokkaido University, Sapporo, Japan, during snowfall. Aerosol particles were collected on millipore filter papers using a low volume air sampler. Their shapes, sizes and chemical components were analyzed by a SEM(Scanning Electron Microscope) and an EDX(Energy Dispersive X-ray). As a results, ice crystals of dendrite and column types were predominantly shown at mature and developing stage of snowfall intensity. The denerite and sector plate types of ice crystals were mainly originated from the sea but column types were come from soil. Scavenging effect by snowfall was greatly also shown at dendrite type ice crystals that embryo was fully developd. Al, Si elements were shown at high frequencies as compared with others. Na, Cl components were especially shown at high frequencies under the sea-breeze wind during snowfall. Anthropogenic aerosol particles had shown with irregular shapes and sizes, relatively. Mainly 3-7$\mu$m aerosol particles were abundant and coarse particles also could be seen during snowfall. Ca, Zn, Fe components mainly caused by spike tires from vehicles in winter season were dominant before snowfall, however the element S mainly caused by human activity was rich after snowfall. The pH values of snow in Sapporo city were higher than those at coastal area. The concentration of chemical components in aerosol particles was also affected by surface winds. Aerosol particles in urban area, Sapporo were mainly affected by human activities like vehicles and combustion with wind system. And their types were related with snowfall intensity.

  • PDF

Development of Equipment and Process on Dry Ice Blasting (드라이아이스 펠렛 세정 장치 및 공정개발)

  • Park, Jong Soo;Kim, Hotae;Kim, Sun-Geon
    • Clean Technology
    • /
    • v.10 no.3
    • /
    • pp.121-130
    • /
    • 2004
  • Pelletizer of dry ice snow produced by adiabatic expansion of liquid carbon dioxide and their blaster were designed and manufactured. The blaster had a high cleaning power against various contaminants on the surface such as stain, oily dirt, lacquer film and paints with low blasting pressure and low consumption of blasting air. The capacity of hopper for dry ice pellet supply was 12 kg and the mass rate of pellet blasting was controlled in 0 to 1.2 kg/min. The impact of the pellets was independent of standoff distance within a certain limiting distance, and dependent on the impact stress, angle and mass rate of dry ice pellet blasting. On the other hand the cleaning power was influenced by thermal properties and surface roughness of the substrates and decreased in the order of glass, copper, brass, steel and acryl. The power was also affected by hardness and adhesion of the contaminant on the substrate, and decreased in the order of grease, epoxy and paint. The noise was detected during blasting in the range of 85 to 100dBA.

  • PDF

A Study on High-Resolution Seasonal Variations of Major Ionic Species in Recent Snow Near the Antarctic Jang Bogo Station (남극 장보고과학기지 인근에서 채취한 눈시료 내의 주요 이온성분들의 고해상도 계절변동성 연구)

  • Kwak, Hoje;Kang, Jung-Ho;Hong, Sang-Bum;Lee, Jeonghoon;Chang, Chaewon;Hur, Soon Do;Hong, Sungmin
    • Ocean and Polar Research
    • /
    • v.37 no.2
    • /
    • pp.127-140
    • /
    • 2015
  • A continuous series of 60 snow samples was collected at a 2.5-cm interval from a 1.5-m snow pit at a site on the Styx Glacier Plateau in Victoria Land, Antarctica, during the 2011/2012 austral summer season. Various chemical components (${\delta}D$, ${\delta}^{18}O$, $Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, $SO_4{^2-}$, $NO_3{^-}$, $F^-$, $CH_3SO_3{^-}$, $CH_3CO_2{^-}$ and $HCO_2{^-}$) were determined to understand the highly resolved seasonal variations of these species in the coastal atmosphere near the Antarctic Jang Bogo station. Based on vertical profiles of ${\delta}^{18}O$, $NO_3{^-}$and MSA, which showed prominent seasonal changes in concentrations, the snow samples were dated to cover the time period from 2009 austral winter to 2012 austral summer with a mean accumulation rate of $226kgH_2Om^{-2}yr^{-1}$. Our snow profiles show pronounced seasonal variations for all the measured chemical species with a different pattern between different species. The distinctive feature of the occurrence patterns of the seasonal variations is clearly linked to changes in the relative strength of contributions from various natural sources (sea salt spray, volcanoes, crust-derived dust, and marine biogenic activities) during different short-term periods. The results allow us to understand the transport pathways and input mechanisms for each species and provide valuable information that will be useful for investigating long-term (decades to century scale periods) climate and environmental changes that can be deduced from an ice core to be retrieved from the Styx Glacier Plateau in the near future.

Amber Information Design for Supporting Safe-Driving Under Local Road in Small-scale Area (국지지역에서의 안전운전 지원을 위한 경보정보 설계)

  • Moon, Hak-Yong;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.38-48
    • /
    • 2010
  • Adverse weather (e.g. strong winds, snow and ice) will probably appear as a more serious and frequent threat to road traffic than in clear climate. Another consequence of climate change with a natural disastrous on road traffic is respond to traffic accident more the large and high-rise bridge zone, tunnel zone, inclined plane zone and de-icing zone than any other zone, which in turn calls for continuous adaption of monitoring procedures. Accident mitigating measures against this accident category may consist of intense winter maintenance, the use of road weather information systems for data collection and early warnings, road surveillance and traffic control. While hazard from reduced road friction due to snow and ice may be eliminated by snow removal and de-icing measures, the effect of strong winds on road traffic are not easily avoided. The purpose of the study described here, was to design of amber information the relationship between traffic safety, weather, user information on road weather and driving conditions in local-scale Geographic. The most applications are the optimization of the amber information definition, improvements to road surveillance, road weather monitoring and improved accuracy of user information delivery. Also, statistics on wind gust, surface condition, vehicle category and other relevant parameters for wind induced accidents provide basis for traffic control, early warning policies and driver education for improved road safety at bad weather-exposed locations.

Weather and Climatic Environment of Seoul Area in South Korea during 1623~1800, Reconstructed from 'The Daily Records of Royal Secretariat of Joseon Dynasty(承政院日記)' (1623~1800년 서울지역의 기상기후 환경 -'승정원일기'를 토대로-)

  • LEE, Joon Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.4
    • /
    • pp.856-874
    • /
    • 2016
  • This study aims to figure out the weather and climate environment of Seoul area in S. Korea during 1623~1800, which has not been studied so far, by using daily records of weather conditions and meteorological phenomena in the Daily Records of Royal Secretariat of Joseon Dynasty(承政院日記) together with records of abnormal weather conditions and natural disasters in the Annals of the Joseon Dynasty(朝鮮王朝實錄). During 1500~1760 as a period of the Little Ice Age it was generally cold and dry, particularly cool summers of Seoul area. Changes in weather conditions and meteorological phenomena and climate changes appeared prominently at around 1650, 1710, 1770. The annual numbers of rain days and of snow days began to change largely in the 1640s. The rain(and snow) days reduced significantly in the 1710s~1650s, but increased sharply in the 1710s and later. The rain days in summer rapidly increased after the late 1710s, while the snow days greatly reduced after the mid 1770s. The cloudy days around the 1710s greatly reduced in summer, while slightly increased in winter. The hail days increased significantly in the late 1720s and lasted until the 1760s. The fog days began to reduce after 1770 to the fewer days than the climatic normals of 1981~2010. These times are overall consistent with findings of historical climatological cross-checking data and geophysical biological proxy data, accompanied by a trend of relatively enhanced colder and drier of Seoul area.

  • PDF