• 제목/요약/키워드: smoothing splines

검색결과 16건 처리시간 0.023초

On the regularization with nonlinear splines

  • Chung, S.K.;Joe, S.M.
    • 대한수학회논문집
    • /
    • 제12권1호
    • /
    • pp.165-176
    • /
    • 1997
  • In order to overcome computational ill-posedness which arises when we solve the least square problems, nonlinear smoothing splines are used. The existence and the convergence on nonlinear smoothing spline are shown with numerical experiments.

  • PDF

유전자 알고리즘을 이용한 비모수 회귀분석 (Nonparametric Regression with Genetic Algorithm)

  • 김병도;노상규
    • Asia pacific journal of information systems
    • /
    • 제11권1호
    • /
    • pp.61-73
    • /
    • 2001
  • Predicting a variable using other variables in a large data set is a very difficult task. It involves selecting variables to include in a model and determining the shape of the relationship between variables. Nonparametric regression such as smoothing splines and neural networks are widely-used methods for such a task. We propose an alternative method based on a genetic algorithm(GA) to solve this problem. We applied GA to regression splines, a nonparametric regression method, to estimate functional forms between variables. Using several simulated and real data, our technique is shown to outperform traditional nonparametric methods such as smoothing splines and neural networks.

  • PDF

The Use of The Spectral Properties of Basis Splines in Problems of Signal Processing

  • Nasiritdinovich, Zaynidinov Hakim;Egamberdievich, MirzayevAvaz;Panjievich, Khalilov Sirojiddin
    • Journal of Multimedia Information System
    • /
    • 제5권1호
    • /
    • pp.63-66
    • /
    • 2018
  • In this work, the smoothing and the interpolation basis splines are analyzed. As well as the possibility of using the spectral properties of the basis splines for digital signal processing are shown. This takes into account the fact that basic splines represent finite, piecewise polynomial functions defined on compact media.

A FRAMEWORK TO UNDERSTAND THE ASYMPTOTIC PROPERTIES OF KRIGING AND SPLINES

  • Furrer Eva M.;Nychka Douglas W.
    • Journal of the Korean Statistical Society
    • /
    • 제36권1호
    • /
    • pp.57-76
    • /
    • 2007
  • Kriging is a nonparametric regression method used in geostatistics for estimating curves and surfaces for spatial data. It may come as a surprise that the Kriging estimator, normally derived as the best linear unbiased estimator, is also the solution of a particular variational problem. Thus, Kriging estimators can also be interpreted as generalized smoothing splines where the roughness penalty is determined by the covariance function of a spatial process. We build off the early work by Silverman (1982, 1984) and the analysis by Cox (1983, 1984), Messer (1991), Messer and Goldstein (1993) and others and develop an equivalent kernel interpretation of geostatistical estimators. Given this connection we show how a given covariance function influences the bias and variance of the Kriging estimate as well as the mean squared prediction error. Some specific asymptotic results are given in one dimension for Matern covariances that have as their limit cubic smoothing splines.

Boundary Corrected Smoothing Splines

  • Kim, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권1호
    • /
    • pp.77-88
    • /
    • 1998
  • Smoothing spline estimators are modified to remove boundary bias effects using the technique proposed in Eubank and Speckman (1991). An O(n) algorithm is developed for the computation of the resulting estimator as well as associated generalized cross-validation criteria, etc. The asymptotic properties of the estimator are studied for the case of a linear smoothing spline and the upper bound for the average mean squared error of the estimator given in Eubank and Speckman (1991) is shown to be asymptotically sharp in this case.

  • PDF

Semiparametric Regression Splines in Matched Case-Control Studies

  • Kim, In-Young;Carroll, Raymond J.;Cohen, Noah
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.167-170
    • /
    • 2003
  • We develop semiparametric methods for matched case-control studies using regression splines. Three methods are developed: an approximate crossvalidation scheme to estimate the smoothing parameter inherent in regression splines, as well as Monte Carlo Expectation Maximization (MCEM) and Bayesian methods to fit the regression spline model. We compare the approximate cross-validation approach, MCEM and Bayesian approaches using simulation, showing that they appear approximately equally efficient, with the approximate cross-validation method being computationally the most convenient. An example from equine epidemiology that motivated the work is used to demonstrate our approaches.

  • PDF

Negative Binomial Varying Coefficient Partially Linear Models

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • 제19권6호
    • /
    • pp.809-817
    • /
    • 2012
  • We propose a semiparametric inference for a generalized varying coefficient partially linear model(VCPLM) for negative binomial data. The VCPLM is useful to model real data in that varying coefficients are a special type of interaction between explanatory variables and partially linear models fit both parametric and nonparametric terms. The negative binomial distribution often arise in modelling count data which usually are overdispersed. The varying coefficient function estimators and regression parameters in generalized VCPLM are obtained by formulating a penalized likelihood through smoothing splines for negative binomial data when the shape parameter is known. The performance of the proposed method is then evaluated by simulations.

선형 평활스플라인 함수 추정과 적용 (A Linear Smoothing Spline Estimation and Applications)

  • 윤용화;김경무;김종태
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권1호
    • /
    • pp.29-36
    • /
    • 1998
  • 본 논문은 Eubank (1994, 1997)에 의해 이론적으로 제안된 선형 평활스플라인 추정량에 대한 알고리즘을 개발함으로 선형 스플라인의 추정을 보다 쉽고 효율적으로 사용할 수 있도록 하는데 목적이 있다. 이 알고리즘을 이용하여 여러가지 모형의 예들에 대하여 추정량의 적합성을 조사하였고, 제시된 선형 평활스플라인 추정량이 비모수 함수 추정의 도구로서 잘 적합됨을 알 수 있었다.

  • PDF

이차 평활스플라인 (A Second Order Smoother)

  • 김종태
    • 응용통계연구
    • /
    • 제11권2호
    • /
    • pp.363-376
    • /
    • 1998
  • 선형 평활스플라인 추정은 경계 편의의 영향력을 제거 하기위해 수정된 것이다. 제시된 추정량은 적합된 값들과 관련있는 평활 모수 선택 기준의 계산을 개선시킨 O(n) 얄고리즘을 사용하여 효과적으로 계산할 수 있게 하였다. 추정량의 점근적 성질들이 균일 계획의 경우에 대하여 연구되었다. 이 경우에 경계수정 선형 평활스플라인들의 평균 제곱 오차의 성질들은 표준 이차 커널 평활들에 대한 평균제곱오차들과 점근적 특성으로 비교하였다.

  • PDF

Effective Computation for Odds Ratio Estimation in Nonparametric Logistic Regression

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • 제16권4호
    • /
    • pp.713-722
    • /
    • 2009
  • The estimation of odds ratio and corresponding confidence intervals for case-control data have been done by traditional generalized linear models which assumed that the logarithm of odds ratio is linearly related to risk factors. We adapt a lower-dimensional approximation of Gu and Kim (2002) to provide a faster computation in nonparametric method for the estimation of odds ratio by allowing flexibility of the estimating function and its Bayesian confidence interval under the Bayes model for the lower-dimensional approximations. Simulation studies showed that taking larger samples with the lower-dimensional approximations help to improve the smoothing spline estimates of odds ratio in this settings. The proposed method can be used to analyze case-control data in medical studies.