Comm. Korean Math. Soc. 12 (1997), No. 1, pp. 165-176

ON THE REGULARIZATION
WITH NONLINEAR SPLINES*

S. K. CHUNG AND S. M. JOE

ABSTRACT. In order to overcome computational ill-posedness which
arises when we solve the least square problems, nonlinear smoothing
splines are used. The existence and the convergence on nonlinear smooth-
ing spline are shown with numerical experiments.

1. Introduction

The problem of least squares arises in a broad class of scientific areas
such as signal processing, automatic control, statistics, economics, biol-
ogy, etc. It is a problem to find a curve f(z) € X which is the solution
of

(1.1) min » {yi — f(z:)}",

fex

i=1
where the data (z;,yi),a =2y <22 <--- <, =b, are given and X is
an appropriate set of functions.

Of course, (1.1) is minimized if we take f(z) as an interpolating func-
tion of (z;,y;). But in many practical problems the obtained data y;
consist of errors;

(1.2) yi = fle) +e. 1<i<n,

where €; are white noisy, that is, ¢; are uncorelated with zero means.
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Because of errors in data, it is not meaningful to seek an interpolating
functional. Hence we would better not to try to obtain an interpolating
functional when we solve the problem of least squares. But the prob-
lem of least squares turns out to be computationally ill-posed in many
cases. In order to avoid this ill-posedness Tikhonov[13] first introduced
a regularization method which is to find the solution of

(1.3) }Téi}}[;{yi_f(l'i)}Z—{»/\Q(f)]ﬂ

where (-) is a nonnegative smoothing functional and X is a regulariza-
tion parameter instead of solving (1.1) directly.

Among various ways to choose §2( f), one of the most popular smooth-
ing functionals is

(14) 0) =[5 (@) e

The solution of minimization problem (1.4) is well known as the cubic
spline. The problem (1.3) with (1.4) has been studied by Schoenberg|[11].
In [11], the author showed that the solution of (1.3) converges to the lin-
ear solution of least squares problem of (1.1) as A — oc and to the
cubic spline interpolating (z;, f(z;)) as A — 0. The existence of solution
for (1.3) and (1.4) has been studied by Lukas{7]. The method of find-
ing optimal regularization parameter by cross validations is discussed
by Wahba[15]. For more theoretical background on (1.3), see Locker
and Prenter[6], Lukas|7], Morozov[9], Neubauer[10], and Tikhonov and
Arsenin{14].

Since the interpolating cubic spline is not invariant under the rigid
motion, we may take a functional (f) as

(15) 0(f) = / {K(f:.5))7ds.

where (f;s) is the curvature of f(x). The functional Q(f) in (1.5) 1s
known to be invariant under the rigid motion. The solution of minimiz-
ing (1.5) interpolating (z;, f(z;)) is called a nonlinear spline. Note that



Regularization with nonlinear splines 167

(1.4) is a linearization of (1.5). The existence and convergence of nonlin-
ear spline interpolation has been considered by Jerome[3}-[4]. Numerical
solutions of nonlinear cubic splines can be seen in Lee and Forsythe[5],
Malcolm([8] and Horn[1]. And the methods of finding invariant solutions
for (1.1) under the rigid motion can be found in Van Huffel and Vande-
walle [2].

In this paper we will consider the nonlinear spline smoothing problem

(1.6) min J(f):= §1é1§1[;{y1 — flz)}* + )./{,q(f;s)}st].

The problem (1.6) may be rewritten as

(1.7) minJ(f —nunZ{yl (z;) /{1+f )Z}Qd].

=1

In section 2, the existence and convergence of a nonlinear smoothing
spline will be shown. In section 3, numerical solutions of (1.7) will be
considered by using finite difference methods.

2. Existence and uniqueness

In this section, we consider the existence of (1.7) in an appropriate
function space X. For the existence of nonlinear interpolating splines,
we need to take X as

X ={f € H*a,b]:|f'(x)| < M for all z € [a,b] and |f(zg)| < C for z¢ € [a, b]}.

Then it is clear that X is convex and closed since derivative evaluations
are continuous linear functionals on H?[a, b].

For the simple notations we introduce a linear operator 4 : X C
H? - R" defined by

(21) Af:(f(fl)»f(J:Z)wa('Tn)) VfG‘Y
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For y = (y1,y2,...,Yn) let

n

(2.2) (A~ yl? =D {vi — fz)?

i=1
and a differential operator T : X C H? — L, be

fH

2 =

Then the smoothing functional in (1.5) is Q(f) = ||Tf||>. Jerome[3]
has shown the following Theorem 2.1 which tells that a nonlinear spline
interpolating (r;,y;) exists in X.

THEOREM 2.1. Let U, be any closed convex subset of H*[a,b] with
the property that for some z, € [a,b],|f(z)] < C for f € U, and a
constant C > 0. Define

U=U,U{fe H*a,b:|f"(x)| <M for all z € [a,b]}.
The minimization problem

(2.4) rfneigHTf — gl

has a solution for each g € La[a,b].
Along the ideas of the proof in [3], we may prove the following lemma.

LEMMA 2.1. Let the operator A and the functional 0 be defined as
in (2.1) and (1.5), respectively. Then the following hold.

(1) The set {f € X : Q(f) < oo} is nonempty.

(2) For any sequence {fx} in X converging weakly to f in X with
{Afi} bounded in R", {Afy} converges weakly to Af.

(3) For any constant a > 0 and any sequence {fx} in H? satisfying
Q(f) < a, there is a subsequence {fr,} which converges weakly
to f in X and Q(f) < «. Further, {Tfx} converges weakly to

Tf.
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PRrOOF. (1) Since the set X is clearly a closed convex subset of H?
satisfying (2.5) and Q(f) < [|f"(2)]*dz. Q(f) < oo for each f € X
and the problem (2.4) has a solution f in X by Theorem 2.1. Hemnce
{f € X:Q(f) < oo} is clearly nonempty.

(2) Since fx(x) = frlxo) + fr(E)x — x¢) for some £ between r and
ro, |fr(z)| < C + M(b— a). Hence any sequence {fr} in X is bounded
and actually uniformly bounded on [a, ). We muy choose a subsequence
{fr.} of {fi} which converges weakly to f in X.

Since the operator A is continuous and {fx, ! is bounded. {Afx } is
bounded. Thus {Afx,} converges weakly to Af by the Closed Graph
Theorem.

(3) Let {fr} be a sequence from H? with Q(fr) < « for a positve
constant a. Then we may choose a subsequence {fi, } which converges
weakly to f € H?. Since for any ¢ € H?

(_fkvtro) + (fllc*“ro!) + (f;c”,*o”) - (fP) + ("‘('I’ ‘rol) + (fut @II)

and by the Sobolev imbedding theorem {fx} and {f;} converge uni-
formly to f and f', respectively,

(i) = (f1 9.

That is, {f}'} converges weakly to f"” € L,. This implies that {7 fi}
converges weakly to Tf and the proof is completed. [

LEMMA 2.2. Let A and Q be defined as (2.1, and (1.5). respectively.
Then there exists a solution f* of

2.5 min [|Af — v,
2.5 min 47 -

where f* is the weak limit of a minimizing sequence {fi} of (2.5) and
y = (g(z1), g(x2),...g(xn)) for g € Ly.

Proor. Let Yz = {f € X : Q(f) < #}. Then since Tf € L, for
f € X, Y3 is nonempty.

Let {f¢} be a minimizing sequence of (2.5) on Y5, Then {Afi} is
clearly bounded. It follows from Lemma 2.1 that there exists a subse-
quence {fx, } of { fr} which converges weakly to f* € X with Q(f*) < 3.
This implies that f* € Y3.



170 S. K. Chung and S. M. Joe
Hence by Lemma 2.1 {Afi} converges weakly to A f* and

JAf* =yl <liminf |Afy —y||* = inf |Af - y]*
f€Yy

Therefore, the minimum of (2.5) is attained at f* € ¥3. 0O

We are now ready to show that the solution of (1.7) exists with the

aid of [9].

THEOREM 2.2. The minimization problem (1.7) has a solution f in
X.

PROOF. Let {fx} be a minimizing sequence of (1.7) in Y. Then both
{Afi} and {Q(fi)} are bounded. Hence we can choose a subsequence
{fx.} of {fx} which converges weakly to f and {Af; } and {Q(fi )}
converge weakly to Af and Q(f), respectively. It follows from Lemma
2.1 and Lemma 2.2 that the minimum of {||Afx — y||} and {Q(fx)} are
obtained at f simultaneously. This completes the proof. O

Let s(z) be the cubic spline interpolating the given data (z;,y;) and
qi(z) the least square polynomial of degree one. Schoenberg[11] has
shown that the solution s(z,A) of (1.3) with (1.4) has the property

)1\1:110 s(z, X)) = s(z), )}LII;GS(f A) =g (z).

Asin [11}, we can easily show that the following behaviour of nonlinear
smoothing solution along the smoothing parameter .

THEOREM 2.3. Let fy be the solution of (1.7), q1(z) the least square
polynomial of degree one and s(z) the nonlinear cubic spline interpolat-
ing (z;,y;). Then

lm fy(z) =s(z), lim fi(z) = qi(z).

A—0 A—o0o



Regularization with nonlinear splines 171

3. Discrete solutions

In this section we consider numerical solutions of (1.7) using finite
difference schemes. Let u; = f(z;) and take h = z;4; — z; for the
simplicity of calculation. For the discretization of (1.7), the central dif-
ference schemes

Uitl — Ui Uipr — 2u; + Ui
Vui = =R Auy = g
for the approximations of f'(z;) and f"(z;), respectively. Then the
functional J(u) in (1.7) becomes

(31)  Jaw) =3 (i -y Z{H‘(‘;‘; i

=1

where u = (uj,usz,...,uy,). In order to find the minimum of (3.1) we
have to solve a system of nonlinear equations
aJ
(3.2) 8’:fi“) -0, i=1,2,...,n
In order to solve (3.2), we will use the generalized Newton’s method;
k+1 k+1) | (k) (k).

(33) u(.k+]):u(.k)-—-w (9‘]}1(115 )7,.., E 1 )’ 5 yeeesUp )/811,‘

' 82Ty (ulFtD B B0y 62y,
where the components of the gradient 9J;(u)/0u of Ju(u) are

0Jy(u
a’;l) — 2w — yi) + Eima (i — 2uimy + ui_g)

+ &ip1(wive — 2uip1 + uy)
+ nic1(ui = viz2) = Dig1(vipe = ui),
and the components of the Hessian 82 J(u)/8%u of Ja(u) are

ath(u) 35
9%, _2+€i_1_2h2€’ (i = tiza) + gopTien
hQCz 1w = 2ui g +ui—g) + 46 + i

5 39

,.

+ 5z T3 Cir1(ign — Uiy + uy).
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Here
E= {1+ (uig1 — uis1)?/(4h?)} 772,
5
ni = é—h—i(UH.] — 2u,‘ -+— u,‘_l)z{l + (ui-H — TAi_])Z/(4h2)}_7/2,

Ci = (wit1 — 2w + wim){1 + (wipr — wisy)?/ (4%} 7772,

and
7= (Uip1 — 2uq + i )W wigy — uim) 1+ (uigy — ui1)?/(4h%)} %2,

NUMERICAL EXAMPLES. We consider the linear smoothing cubic spline
n b
(3.3) min[Z{ui —yi}+ /\/ (u"(x))dz]
=1 a

and the nonlinear smoothing cubic spline

n b
. (u''(z))?

34 =y A dz],
B4 minl ) | m tecme
interpolating (z;,y,),t = 1,2,...,n.

(3.5) yi = u(x;) = z7e 7% — 0.5z, cos(mwx;) + €,
with 5

i~ N(0,0.04), h=—, z;=1h.

s~ N ) 100" "

Figure 1 and Figure 2 show the numerical results for linear and nonlin-
ear cubic spline regularization problems, respectively. In the figures, the
dotted line is the graph of u(r) = z%e7%® — 0.5zcos(mx) and the solid
lines are graphs of numerical solutions for the regularization problem
with regularization parameter A = 1.0. In order to solve systems of non-
linear equations we used generalized Newton’s method with relaxation

parameter w = 0.5.



Regularization with nonlinear splines 173

0.4 , : . : e

-0.8F ' /
-1 " I L . s " "
0 0.5 1 1.5 2 2.5 3 35 4
Figure 1 : Linear spline with A = 1.0 for (3.5)
0.4 — S .

0 05 1 15 2 25 3 35 4
Figure 2 : Nonlinear spline with A == 1.0 for (3.5)
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(3.6) vi = u(z;) = z3e 5% — 0.5z; sin(7z;) + €,
with 3
i~ N(0,0.04), h=-—, i = th.
€ (0,0.04), 100 z 0

Figure 3 and Figure 4 show the numerical results for nonlinear cubic
spline regularization problems for u(r) = x%e™%% — 0.5zsin(nz) with
A = 0.06 and A = 10.0, respectively. We may see that nonlinear cubic
splines with larger A is close to a straight line which is a solution of least
square problem.

13 05 1 15 2 23 3
Figure 3 : Nonlinear spline with A = 0.06 for (3.6)
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Figure 4 : Nonlinear spline with A\ = 10.0 for (3.6)
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