• Title/Summary/Keyword: smoothing gradient method

Search Result 27, Processing Time 0.024 seconds

Enhanced Gradient Vector Flow in the Snake Model: Extension of Capture Range and Fast Progress into Concavity (Snake 모델에서의 개선된 Gradient Vector Flow: 캡쳐 영역의 확장과 요면으로의 빠른 진행)

  • Cho Ik-Hwan;Song In-Chan;Oh Jung-Su;Om Kyong-Sik;Kim Jong-Hyo;Jeong Dong-Seok
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.1
    • /
    • pp.95-104
    • /
    • 2006
  • The Gradient Vector Flow (GVF) snake or active contour model offers the best performance for image segmentation. However, there are problems in classical snake models such as the limited capture range and the slow progress into concavity. This paper presents a new method for enhancing the performance of the GVF snake model by extending the external force fields from the neighboring fields and using a modified smoothing method to regularize them. The results on a simulated U-shaped image showed that the proposed method has larger capture range and makes it possible for the contour to progress into concavity more quickly compared with the conventional GVF snake model.

D.C. Motor Speed control Using Explicit M.R.A.C. Algorithms (Explicit M.R.A.C. 알고리즘을 이용한 직류 전동기 속도 제어)

  • Kim, Jong-Hwan;Park, Jun-Ryeol;Choe, Gye-Geun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.6
    • /
    • pp.11-17
    • /
    • 1983
  • In this paper, the application of the explicit M.R.A.C. algorithms to the D.C. motor speed control using the microprocessor is studied. The adaptation algorithms are derived from the gradient method and the exponentially weighted least square [E.W.L.S.] method. In order to minimize the computational instability of the E.W.L.S. method, the adaptation algorithm of UDUt factorization method is developed, and because of the characteristics of the D.C. motor (dead-aone phenomenon) , the SM. gra-dient type algorithm is also improved from the gradient type algorithm. Computer simulations and experiments show that these algorithms adapt well to the rapid change of the reference input and the load.

  • PDF

A Variable Window Method for Three-Dimensional Structure Reconstruction in Stereo Vision (삼차원 구조 복원을 위한 스테레오 비전의 가변윈도우법)

  • 김경범
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.138-146
    • /
    • 2003
  • A critical issue in area-based stereo matching lies in selecting a fixed rectangular window size. Previous stereo methods doesn't deal effectively with occluding boundary due to inevitable window-based problems, and so give inaccurate and noisy matching results in areas with steep disparity variations. In this paper, a variable window approach is presented to estimate accurate, detailed and smooth disparities for three-dimensional structure reconstruction. It makes the smoothing of depth discontinuity reduced by evaluating corresponding correlation values and intensity gradient-based similarity in the three-dimensional disparity space. In addition, it investigates maximum connected match candidate points and then devise the novel arbitrarily shaped variable window representative of a same disparity to treat with disparity variations of various structure shapes. We demonstrate the performance of the proposed variable window method with synthetic images, and show how our results improve on those of closely related techniques for accuracy, robustness, matching density and computing speed.

A Variable Window Method with Three-Dimensional Disparity Space (삼차원 변이 공간을 이용한 가변윈도우법)

  • 김경범;이홍서
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.284-287
    • /
    • 2003
  • Previous stereo methods doesn't deal effectively with depth discontinuity due to inevitable window-based problems, and so give inaccurate and noisy matching results in areas with steep disparity variations. In this paper. a variable window approach is presented to estimate accurate, detailed and smooth disparities with three-dimensional disparity space. It makes the smoothing of depth discontinuity reduced by evaluating corresponding correlation values and intensity gradient-based similarity in the space. In addition, it devises the novel arbitrarily-shaped variable window to treat with disparity variations of various structure shapes. We show how our results improve on those of closely related techniques for accuracy, robustness. matching density and computing speed.

  • PDF

A Parametric Study of Displacement Measurements Using Digital Image Correlation Method

  • Ha, Kuen-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.518-529
    • /
    • 2000
  • A detailed and thorough parametric study of digital image correlation method is presented. A theoretical background and development of the method were introduced and the effects of various parameters on the determination of displacement outputs from the raw original and deformed image information were examined. Use of the normalized correlation coefficient, the use of 20 to 40 pixels for a searching window side, 6 variables searching, bi-cubic spline sub pixel interpolations and the use of coarse-fine search are some of the key choices among the results of parametric studies. The displacement outputs can be further processed with two dimensional curve fitting for the data noise reduction as well as displacement gradient calculation.

  • PDF

Metal forming analysis using meshfree-enriched finite element method and mortar contact algorithm

  • Hu, Wei;Wu, C.T.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.237-255
    • /
    • 2013
  • In this paper, a meshfree-enriched finite element method (ME-FEM) is introduced for the large deformation analysis of nonlinear path-dependent problems involving contact. In linear ME-FEM, the element formulation is established by introducing a meshfree convex approximation into the linear triangular element in 2D and linear tetrahedron element in 3D along with an enriched meshfree node. In nonlinear formulation, the area-weighted smoothing scheme for deformation gradient is then developed in conjunction with the meshfree-enriched element interpolation functions to yield a discrete divergence-free property at the integration points, which is essential to enhance the stress calculation in the stage of plastic deformation. A modified variational formulation using the smoothed deformation gradient is developed for path-dependent material analysis. In the industrial metal forming problems, the mortar contact algorithm is implemented in the explicit formulation. Since the meshfree-enriched element shape functions are constructed using the meshfree convex approximation, they pose the desired Kronecker-delta property at the element edge thus requires no special treatments in the enforcement of essential boundary condition as well as the contact conditions. As a result, this approach can be easily incorporated into a conventional displacement-based finite element code. Two elasto-plastic problems are studied and the numerical results indicated that ME-FEM is capable of delivering a volumetric locking-free and pressure oscillation-free solutions for the large deformation problems in metal forming analysis.

Implementation of Foveation Filter in DCT Domain

  • Tran, Huy;Kim, Wonha
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.315-318
    • /
    • 2013
  • A novel foveation filter method is proposed in DCT domain. For countering the blocking and ringing artifacts, we devise the tools measuring the signal gradient, the block signal variations in the DCT domain. Each measurement is properly applied to each enhancement region and smoothing region. The proposed method optimally adapts the enhancement factors to the characteristics of the underlying signals and so maximizes the enhancement performances with significantly suppressing the artifacts. The subjective and objective evaluations verify that the proposed method sustains producing the improved video qualities for various sequences without tuning any parameters to individual sequences.

  • PDF

Edge Preserving using HOG Guide Filter for Image Segmentation (영상 분할을 위한 HOG 가이드 필터를 적용한 엣지 보존 기술)

  • OH, Young-Jin;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.10
    • /
    • pp.1164-1171
    • /
    • 2015
  • The edge preserving method is important for image storage and geometric transformation. In this paper, we propose a new edge preserving method using HOG-Guide filter for image segmentation. In our approach, we extract edge information using gradient histogram to set HOG guide line. Then, we use HOG guide line to smooth image. With two to four iterations of smoothing operations, we finally obtain desirable edge preserved image. Our experimental results showed good performances showing that our proposed method is better than other methods.

A new demosaicing method based on trilateral filter approach (세방향 필터 접근법에 기반한 새로운 디모자익싱 기법)

  • Kim, Taekwon;Kim, Kiyun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.4
    • /
    • pp.155-164
    • /
    • 2015
  • In this paper, we propose a new color interpolation method based on trilateral filter approach, which not only preserve the high-frequency components(image edge) while interpolating the missing raw data of color image(bayer data pattern), but also immune to the image noise components and better preserve the detail of the low-frequency components. The method is the trilateral filter approach applying a gradient to the low frequency components of the image signal in order to preserve the high-frequency components and the detail of the low-frequency components through the measure of the freedom of similarity among adjacent pixels. And also we perform Gaussian smoothing to the interpolated image data in order to robust to the noise. In this paper, we compare the conventional demosaicing algorithm and the proposed algorithm using 10 test images in terms of hue MAD, saturation MAD and CPSNR for the objective evaluation, and verify the performance of the proposed algorithm.

AMG-CG method for numerical analysis of high-rise structures on heterogeneous platforms with GPUs

  • Li, Zuohua;Shan, Qingfei;Ning, Jiafei;Li, Yu;Guo, Kaisheng;Teng, Jun
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.93-105
    • /
    • 2022
  • The degrees of freedom (DOFs) of high-rise structures increase rapidly due to the need for refined analysis, which poses a challenge toward a computationally efficient method for numerical analysis of high-rise structures using the finite element method (FEM). This paper presented an efficient iterative method, an algebraic multigrid (AMG) with a Jacobi overrelaxation smoother preconditioned conjugate gradient method (AMG-CG) used for solving large-scale structural system equations running on heterogeneous platforms with parallel accelerator graphics processing units (GPUs) enabled. Furthermore, an AMG-CG FEM application framework was established for the numerical analysis of high-rise structures. In the proposed method, the coarsening method, the optimal relaxation coefficient of the JOR smoother, the smoothing times, and the solution method for the coarsest grid of an AMG preconditioner were investigated via several numerical benchmarks of high-rise structures. The accuracy and the efficiency of the proposed FEM application framework were compared using the mature software Abaqus, and there were speedups of up to 18.4x when using an NVIDIA K40C GPU hosted in a workstation. The results demonstrated that the proposed method could improve the computational efficiency of solving structural system equations, and the AMG-CG FEM application framework was inherently suitable for numerical analysis of high-rise structures.