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Abstract The Gradient Vector Flow (GVF) snake or active contour model offers the best
performance for image segmentation. However, there are problems in classical snake models such as
the limited capture range and the slow progress into concavity. This paper presents a new method for
enhancing the performance of the GVF snake model by extending the external force fields from the
neighboring fields and using a modified smoothing method to regularize them. The results on a
simulated U-shaped image showed that the proposed method has larger capture range and makes it
possible for the contour to progress into concavity more quickly compared with the conventional GVF
snake model.
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1. Introduction proposed by Kass[l] is widely used in many

) ) applications such as object segmentation [2], motion
The snake or active contour model that was first . . .
tracking{3], computer vision[4] and shape modeling

[5]. Generally, there are two types of active contour
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E= f}%[a () + 8 lx"(s)‘2 ] +E, (x(s))ds W

where o and B are weighting parameters that

control the snake’s tension and rigidity, res-
pectively, and x'(s) and x"(s) denote the first and
second derivatives of x(s) with respect to s.

The parametric active contour algorithm has two
main difficulties. First, the initial contour must be
set close to the real edge for a correct deformation.
If the initial contour is set far from the real edge,
it might converge into the wrong shape. Many
methods were proposed to resolve this problem
such as multi-resolution methods[9], pressure forces
[10], and the distance potential method[11]. Second,
it is difficult for the initial contour to progress into
methods

boundary concavities. Although several

have been proposed, there is no satisfactory
solution to this problem.

The GVF snake model proposed by Chenyang
and Jerry showed successful results regarding these

problems[12]. They defined the gradient vector flow

field as the vector field V(% ¥)=[u(xy)v(x )]

which minimizes the energy function

g= [ Juad +u} +V; )+ VT V-V ddy ()

In this equation, f is an edge map derived from
the image and ux, uy and vy, Uy are x or y
directional derivatives of u and v. Parameter p is a
regularization parameter that controls the trade-off
between the first and second terms. This varia-
tional formulation follows a standard principle,
which smoothes the result when there is no data.
Although their GVF snake model has a superior
capture range and handles boundary concavity pro-
blems better than the previous methods, there are
still limitations. Most important issue in conven-—
tional GVF is a limited capture range even if it is
better than
conventional GVF model has also limited capture

traditional snake model. Currently
range like traditional model. Since field including
GVF field is made near edge, zero field increases
as input image is simple. If initial contour locates
in zero fields, it cannot move target position. Hence
contour deform into position

to make target

regardless of initial location in image, fields must

be distributed in entire image range.

Several methods to enhance the performance of
GVF snake model have been suggested. Xu. And
Prince. proposed Generalized Gradient Vector Flow
(GGVF) inl13]. In [13], they two spatially varying
weighting functions to solve concave problem while
maintaining Zeyun et al
proposed a Gradient Vector Diffusion (GVD)[14]
algorithm. They reported a new type of anisotropic

large capture range.

diffusion equation that not only provided a good
estimate of the initial snakes but also generated an
external force on each pixel in the image domain.
Dan suggested a new external force field called the
Simulated Static Electric Field (SSEF)[15]. How-
ever, there were difficulties in driving into a nar—
row concavity as a result of the weak forces.
Therefore, this paper proposes an enhanced GVF
method using field extension and smoothing
processes to solve a limited capture range and
concavity problems associated with the conventional

GVF snake model.

2. Proposed Method

2.1 Overall Scheme

Fig. 1 shows an entire block diagram of the
proposed algorithm based on the GVF snake model
to enhance its performance. First operation is to set
initial contour for final segmented results. And
GVF fields for input image are calculated by [12].
In generally, GVF field calculation consists of three
steps; gradient edge map, GVF field calculation and
iterative modification. In these steps GVF field is
calculated using Equation (2) and mathematical
method.
modification steps, final GVF field for input image

approximation Finally using iterative
is obtained. In this paper, we call it pre-generated
field for final extended field since the proposed
method is cascaded next GVF field calculation step
as post-processing perspective. The cascaded
proposed method has 3 sub steps; thresholding of
the pre-generated GVF field, extension of field and
regularization process. After above processes, better
vector field is obtained and then initial contour is
Finally, contour

deformed using it iteratively.

deformation is stopped in according with pre-

defined termination conditions.
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Fig. 1 Overall block diagram of the proposed algorithm

2.2 Extension of GVF field

The GVF snake model can overcome a limited
capture range problem to some degree compared
with the previous conventional snake models, but it
is not considered to be a perfect solution. In
general, a smoothing operation before the gradient
operation of the original image has been used to
extend the capture range. However, its real edges
can be distorted because it can excessively distort
the image. Hence, a precise contour could not be
guaranteed. In addition, some parameters used in
calculating a GVF field such as g, « and f must
be adjusted properly in order to resolve the initial
contour problem. Consequently, the accuracy of
contour deformation may decrease if more limited
conditions are used.

This paper proposes a new algorithm to over—
come the limited capture range problem by using
the fact that a GVF field in a restricted range may
be extended to the overall image range.

In some regions with non-zero GVF fields, they
act as an external force of an active contour to
guarantee the correct attraction of the contour into
the real edge, but they cannot extend to other
regions with no GVF field. If there is a path of
external forces between the real edge and the
initial contour, it may be attracted into the real

edge despite the initial contour being far from the
real edge. However, the undetermined external force
of each point in the path were estimated from the
fields

information that can be used to estimate the proper

already generated because there was no

external forces in the regions with no GVF field.
Fig. 2 represents the basic design for estimating
the undetermined external force.

The initial contour was set far from the real
The GVF snake algorithm
generates a GVF field near the real edge and may

edge in TFig. 2(a).

have relatively wider capture range than the
conventional snake models. However, there are still
undetermined GVF fields between the edge and the
initial contour. In order to correctly attract the
initial contour into the real edge, there must be a
continuous path that consists of several consecutive
between them. Fig. 2(b)

represents an estimated GVF field path from its

external force fields
pre-generated near real edge.

It is quite difficult and exhaustive to determine
an optimal continuous point-by-point path. There-
fore, in order to reduce the complexity of the
algorithm, the GVF field was extended instead of
determining the continuous path point-by-point. In
order to make the contour move to a real edge,
estimating each path for each point of the initial
contour in the snake algorithm only might be

sufficient.

(b)

Fig. 2 (a) Initial contour, real edge and its neighbor-
hood GVF field, where the left top black line is
a real edge and the right bottom gray line is an

Estimated GVF field

between the initial contour and the real edge in

initial contour. (b)
a path. The proposed method estimates the
undetermined GVF fields

previously generated and the initial contour

between those



98 ARG =EA:

‘ Calculation of GVF fields J

I

I Thrasholding of GVF fields J

Is there zero GVF field point?

Yes
Calculation of pre-generated GVF
points with non-zero values in 8-
neighbarhood
Completion of GVF fields
Estimation of new GVF fields ] I expansion

Fig. 3 Block diagram of GVF extension process

All points that have no GVF field values. have
new values through their extension. Fig. 3 repre-
sents the GVF extension algorithm in detail.

The undetermined GVF field values were esti-
mated from pre-generated values. In this paper,
pre-generated value or field is defined as the value
by the initial general GVF field calculation or
previous extension process. The pre-generated GVF
fields were larger at regions close to the real edges
relative to those far from them. In this paper, the
pre—generated values were not modified. The fol-
lowing equations show how to estimate the new
GVF fields in the points with a zero GVF field
near the pre-generated fields. In this equation,

w, L
px.nzw(i’j):_..d’"—”[z px(i+n,j+m)_px(j,j)]
N, pignor (5 D) LT r;]
’ lf N x.neighbor >0
w LS
Prwenlls )= _dm__[z > p(i+n, j+m)=p i, j)]
1Vy.neighbor (17 ]) n=-1m=-1

, IfN >0

v.neighbor
(3)
P«(i,j) and Py(ij) represent x- and y-directional
GVF field values in location (i,j), Nxneighbor and
Nyneighbor are the number of pre-generated GVFEF
points with non-zero values in the 8-neighborhood
pixels, was is the distance weight (>1) and pxpew
and pynew are the new extended GVF field values.
In specific points with a zero value and non-zero
pre-generated GVF fields in the 8-neighborhood
pixels, their values were replaced using the pre-
generated values in the 8-neighborhood pixels.
Using this algorithm, all the points with zero GVF

2ZE o]

=

2 &8 A 338 A 13060

fields were iteratively extended from the whole
pre-generated GVF field map. However, this exten—
The most
critical is that the extended GVF field can decrease

sion process has several problems.
in the points far from the real edge where most of
the pre-generated fields have very small values.
Therefore, it is expected that the new extended
GVF field may have a smaller value as the
extension process proceeds. In order to resolve this
a threshold value, T,

weight factor, was, was used.

P, ifp 2T
p, =

problem, and a distance

0 ifp <T
_p, ifp 2T
p= 0 l.fP_v<T 4)

A threshold value, T, in the GVF field values
and the distance weight factor prevented the
extended value from reducing. This means that it
is possible to dramatically deform the initial contour
into a real edge even if it is set far from that the
real edge. It is reasonable that the GVF field close
to the real edge must be smaller than the others
further away from the real edge because it can
prevent the excessive deforming of the contour. In
addition, the GVF field far from the real edges
must be larger so that the contour deformation can
be made more quickly.

Fig. 4 shows the result of GVF field extension
process.

In a waisr over 1, the GVF fields increase gradually
as the field extension process iteratively continues.
Therefore, the contour far from the real edge may

(a) (b)
Fig. 4. GVF field extension process. (a) Field map
using the conventional GVF method. (b)
Extended map using proposed method



Snake 2o A 2] /A E Gradient Vector Flow: i3 d <o 47 gHo g2 WME 2 99

(a) (b)
Fig. 5 GVF field extension process using the distance
weight factor. (a) Extended GVF field map of
Fig. 4(a) using the distance weight factor over

1. (b) Magnified image of (a)

converge more rapidly. Fig. 5 shows the extended
GVF fields using the distance weight factor.

2.3 Smoothing of GVF field

The main objective of the smoothing process for
the extended GVF field is to help the contour to
converge into the concavities faster.

In this paper, a simple smoothing mask, which is
shown in Fig. 6, was applied to the extended GVF
field map generated in the previous section.

1/Nne X 1 0 1

Fig. 6 A simple 3 x 3 smoothing mask, where NNB
is the number of pixels with a non-zero GVF

field in the 8-neighboring pixels

In the normalization factor, Nxp, the number of
pixels with only non-zero values was used in order to
prevent the smoothing values from decreasing at the
region with a zero GVF field. Although the GVF field
may extend to the whole regions using the proposed
method, the zero field points might exist because their
fields can cancel each other. The smoothing process
was applied iteratively by just convolving the ex-
tended GVF field map with the proposed smoothing
mask in Fig. 6 and stopped after the proper number
of iterations according to the complexity of the image
and the degree of its concaveness was reached.
However, the image may require more iterations if it
has a higher concavity and complexity.

3. Experiment Results

The proposed method based on the GVF snake
model reported by Chenyang Xu and Jerry Prince
was implemented on a platform of an IDL (Inter-
active Data Language, Research Systems, Inc)
using a Pentium 4 1.6MHz PC. These experiments
used a U-shape simulation image to represent the
advantages of the wider capture range and the
ability of the fast convergence into concavity in the
GVF

snake model. The U-shape image used in this

proposed method relative to the classical

paper has a 256x256 resolution and a gray level
intensity. Fig. 7 shows the extended the capture
range using the U-shape images with «=001, £
=0.0 and =05 for GVF field calculation and r
(gamma)=5 and k (kappa)=0.6 for the snake defor-
mation. The threshold value for the pre-generated
force field used before the main extension was 0.3.
A classical GVF force field exists around the real
edges and has a limited capture range, even though
it is wider than the traditional snake models.
Although several parameters in the GVF snake
model might widen the capture range when used
appropriately, it is difficult set the parameters pro-
perly. Moreover, it cannot extend the capture range
to the whole region.

The convergence of the initial contour between
the GVF snake model and the proposed method
was tested. Fig. 7(b) and (d) show the force field
maps generated by the classical GVF snake model
and the proposed method, respectively, where the
number of iterations for the smoothing process was
30. In the U-shape image, the initial contour was
set very far from the real edge in order to compare
the convergence of the initial contour.

Fig. 7(a) and (c) show the convergence of a
contour using the classical GVF external force field
and the extended external forces by the proposed
method respectively. In Fig. 7(a), the initial contour
in the GVF snake model could not converge into
the real edge because there were no external forces
close to the initial contour. However, the initial
contour in the proposed method can converge into
the real edge and progress into the boundary
concavity if it is set close to the real edge, as
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(c) (d
Fig. 7 The capture ranges in the U-shape image. A
contour far from the real edge converges by
using the extended external forces (d) by the
proposed method in (c), but does not converge

using the classical GVF external forces (b) in (a)

shown in Fig. 7(c) because of the existence of
external forces close to the initial contour.

We validated the huge capture range of the
proposed method through the real application, MR
cardiac left-ventricular segmentation. The left-
ventricle segmentation method used in this paper is
based on [16]. The method from [16] preprocessed
image using k-means clustering and merging and
applied the GVF snake model

segmentation results. We used the proposed method

to obtain final

instead of conventional GVF method to validate the
powerfulness in capture range. Fig. 8(a) is the
original MR cardiac left-ventricle image and we
aim to obtain inner contour. K-means clustering
and merging proposed in {16] simplified image such
as Fig. 8(c). For experiments, we set the small
initial contour in inner center position like Fig. 8(d).
From GVF filed calculation and extension process,
Fig. 8(e) and (f) were obtained. In this real app-
lication, it is very difficult for expert to set initial
contour carefully for each image. Therefore drawing

small closed-path in inner position may be very

{~ WWMHI 1v|| “l:
I

=R

Fig. 8 Cardiac left ventricular segmentation results
GVF and the proposed
method. (a) is MR cardiac left ventricle image. (b)
is k-means clustered image(number of clusters=4)

using conventional

of (a) and (c) is merged image (number of
labels=3) of (b). (d) shows initial contour for
segmentation of inner contour and (e) and (g) are
GVF filed map and final segmentation result
using conventional GVF method. (f) and (h) are
GVF field map and final segmentation results
using the proposed method
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useful in reducing time and hand-work. In using
conventional GVF method, final segmentation result
is wrong because filed values for the propagation
of contour exist mainly around real edges (Fig.
8(g)). However the proposed method using field
extension and smoothing could support the widest
capture range and segment inner boundary perfectly
(Fig. 8(h)).

The proposed field extension method can widen
the capture range regardless of the parameter
value, ¢ (mu) that can be usually modified acc-
ording to the noise level of the image and the
capture range in the conventional GVF method. Fig.
7 shows the parameter independency of the pro-
posed method relative to the conventional one. Fig.
9a) and (b) show the GVF field using the
conventional method and the proposed one with the
same §I value (0.5). Through the field extension and
smoothing process, (b) has a wider capture range
than (a). Fig. 9(c) and (d) show the field generated
using the same methods used in (a) and (b) with a
different 1 value (0.1). Since 1 is smaller than (a),
(¢) shows a narrower capture range. However, (d)
using the proposed method shows the capture
range similar to (b) even if it uses a small u value.
Fig. 9(e) and (f) show the same experiment results
using 10 iterations. Since the proposed method can
widen the capture range with different parameter u
the

contour far from the real edge can converge into

values and the number of iterations, initial
the correct ones such as Fig. 9(e) and (f).

In order to represent the advantage of the
proposed method over previous methods for fast
convergence into concavity, the number of iterations
needed for the contour to converge into the con-
cavity was evaluated.

Fig. 10(a) shows a 256 x 256 U-shape image and
the initial contour. Fig. 10(b) and (c¢) show the
magnified images of the classical and extended
GVF force field maps according to the proposed
method around the concavity, respectively. In the
boundary concavity, the GVF snake model has few
external forces toward the inside of the concavity
even though it is better than any traditional snake
model. However, in Fig. 10(c) of the extended force

field map, many force fields face into the concavity,

101

Fig. 9

(g) (h)

Field extension process with the parameter
values of 1 and the number of iterations. (a),
(¢c) and (e) show the GVF fields of the
U-shape image using the conventional GVF
method with different g values ((a):0.5, (¢):
0.1, (e):0.5) and the number of iterations
((a):30, (c):30, (e):10). GVT field (b), (d) and
(f) using the proposed field extension method
with the same p values and the number of
iterations with a wider capture range than (a),
(c) and (e). (g) and (h) are the deformation
results of the contour using (b) and (d).i
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which can guide the contour into the concavity.
Fig. 10(d), (e) and (f) show the convergence results
of the contour using the GVF snake model after 18,
36 and 51 iterative deformations and Fig. 10(g), (h)
and (i) show the convergence results using the
extended external forces according to the proposed
method after 18, 36 and 51 iterative deformations.

In 18 iterative deformations, the two convergence

2 28 A 334 A1 EQ006D)

results were similar. After 36 iterative deformations,
the contour using the proposed method converged
faster as the contour converged into the concavity
than the classical GVF snake model. According to
the proposed method, after 51 iterative deforma-
tions, the contour using the classical GVF snake
model still converges into the concavity when the

contour from the extended force field arrives at the

(a)

(c)

(d)

()

(g)

@

Fig. 10 Comparison of the convergence speed into the boundary concavity for the U-shape image. (a) The

initial contour, (b) GVF external force field in the boundary concavity and (c) the extended force

field by the proposed method in the boundary concavity. (d), (e) and (f) are the convergence of
the contour using the GVF external force field after 18, 36 and 51 iterations. (g), (h) and (i) are
the convergence of the contour using the extended external force field by the proposed method

after 18, 36 and 51 iterations.g
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end of the concavity.

4. Conclusion and Discussion

A GVF snake model is a very effective algorithm
when applied to a deformable model and is widely
used in many applications such as vision and
it still
range and boundary concavity problems in actual

medical imaging. However, has capture
applications. In this paper, the proposed method
enhanced the performance of the GVF snake model
by solving the capture range and boundary con-
cavity problem by extending the GVF field and
smoothing field.

In the capture range problem, the proposed
method extended the limited external force field to
the entire image. Therefore, it can converge into a
real edge regardless of the location of the initial
contour. The capture range of the classical GVF
snake model may be controlled in accordance with
several parameters such as the regularization para-
meter U and the number of iterations[12]. How-
ever, in the proposed method, it could support the
widest capture range regardless of several para-
meters used to generate the GVF force. Therefore,
it can be independent of the parameters and it is
more convenient to set the initial contour.

The proposed method also makes the contour
progress into the boundary concavity more quickly
than previous methods. In previous methods, the
contour could not progress into the concavity
because only a small field in the entrance of the
concavity faces inside. Since most methods produce
a field based on the image locality, the field usually
faces the nearest edge(1,2,10]. Consequently, most
of the fields inside the concavity usually point
towards the direction normal to the concavity, and
not in the tangent direction. The contour, which
moved to the entrance of the concavity, may not
progress inside if the direction of the field does not
point to the inside direction. However, the proposed
method considers the global characteristics of the
image using the smoothing process of the field.
The proposed field smoothing process did not
consider just the nearest edges and thus resolved
the local minimum problem. The iterative smoo-—

thing process made the overall shape of the field

and helped the contour to progress more quickly. In

the concavity, the iterative smoothing process
combined the tangent directional field, which exists
inside the concavity, with the normal directional
field pointing to the nearest edge but not inside.
Therefore, the final field pointed to the inside,
which is in contrast to most previous methods.

Even if the proposed method supports advantages
relative to the conventional GVF snake model, there
are still problems that need to be solved. In the
two processes of the proposed methods, the smoo-
thing field process was applied iteratively. If the
number of iterations is set properly, almost perfect
results can be obtained. However, it is not easy to
set the best number of iterations in many different
kinds of images. As a general rule, a larger
number of iterations are needed in images with
many concavities. Therefore, more algorithms will
be needed in the GVF snake model in order to
obtain an optimal number of iterations so as to
produce a better and more generalized performance.
However, the computation time is expected to
depend on the complexity of the image when pro-
cessing the field extension.

Finally, the GVF snake model is a very useful
algorithm that can be utilized in many real appli-
cations. Overall, a higher performance will be
expected in many real applications when using the

GVF snake model with the proposed method.
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