• Title/Summary/Keyword: smoothing gradient method

Search Result 27, Processing Time 0.025 seconds

GLOBAL CONVERGENCE METHODS FOR NONSMOOTH EQUATIONS WITH FINITELY MANY MAXIMUM FUNCTIONS AND THEIR APPLICATIONS

  • Pang, Deyan;Ju, Jingjie;Du, Shouqiang
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.609-619
    • /
    • 2014
  • Nonsmooth equations with finitely many maximum functions is often used in the study of complementarity problems, variational inequalities and many problems in engineering and mechanics. In this paper, we consider the global convergence methods for nonsmooth equations with finitely many maximum functions. The steepest decent method and the smoothing gradient method are used to solve the nonsmooth equations with finitely many maximum functions. In addition, the convergence analysis and the applications are also given. The numerical results for the smoothing gradient method indicate that the method works quite well in practice.

Instantaneous frequency extraction in time-varying structures using a maximum gradient method

  • Liu, Jing-liang;Wei, Xiaojun;Qiu, Ren-Hui;Zheng, Jin-Yang;Zhu, Yan-Jie;Laory, Irwanda
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.359-368
    • /
    • 2018
  • A method is proposed for the identification of instantaneous frequencies (IFs) in time-varying structures. The proposed method combines a maximum gradient algorithm and a smoothing operation. The maximum gradient algorithm is designed to extract the wavelet ridges of response signals. The smoothing operation, based on a polynomial curve fitting algorithm and a threshold method, is employed to reduce the effects of random noises. To verify the effectiveness and accuracy of the proposed method, a numerical example of a signal with two frequency modulated components is investigated and an experimental test on a steel cable with time-varying tensions is also conducted. The results demonstrate that the proposed method can extract IFs from the noisy multi-component signals and practical response signals successfully. In addition, the proposed method can provide a better IF identification results than the standard synchrosqueezing wavelet transform.

Meshfree consolidation analysis of saturated porous media with stabilized conforming nodal integration formulation

  • Wang, Dongdong;Xie, Pinkang;Lu, Hongsheng
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.107-125
    • /
    • 2013
  • A strain smoothing meshfree formulation with stabilized conforming nodal integration is presented for modeling the consolidation process in saturated porous media. In the present method, nodal strain smoothing is consistently introduced into the meshfree approximation of strain and pore pressure gradient variables associated with the saturated porous media. Meanwhile, in order to achieve a consistent numerical implementation, a smoothing approximation of the meshfree shape function within a nodal representative domain is also proposed in the stiffness construction. The resulting discrete system of equations is all expressed in smoothed nodal measures that are very efficient for numerical evaluation. Subsequently the space-time fully discrete equations are further established by the generalized trapezoidal rule for time integration. The effectiveness of the proposed meshfree consolidation analysis method is systematically illustrated by several benchmark problems.

A Study on the Contour-Preserving Image Filtering for Noise Removal (잡음 제거를 위한 윤곽선 보존 기법에 관한 연구)

  • Yoo, Choong-Woong;Ryu, Dae-Hyun;Bae, Kang-Yeul
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.4
    • /
    • pp.24-29
    • /
    • 1999
  • In this paper, a simple contour-preserving filtering algorithm is proposed. The goal of the contour-preserving filtering method is to remove noise ad granularity as the preprocessing for the image segmentation procedure. Our method finds edge map and separates the image into the edge region and the non-edge region using this edge map. For the non-edge region, typical smoothing filters could be used to remove the noise and the small areas during the segmentation procedure. The result of simulation shows that our method is slightly better than the typical methods such as the median filtering and gradient inverse weighted filtering in the point of view of analysis of variance (ANOVA).

  • PDF

Comparison Analysis of Methods for Smoothing the Stream Profiles Extracted from Digital Elevation Models and Suggestion of a New Smoothing Method (DEM에서 추출한 하천종단곡선의 평활화 방법 고찰 및 새로운 방법의 제안)

  • Byun, Jongmin;Seong, Yeong Bae
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.3
    • /
    • pp.339-356
    • /
    • 2014
  • Easy access to DEMs and the development of technology treating DEMs make it easier to extract stream longitudinal profiles from DEMs than previously done. Since such profiles possess many problems such as artificial flats and steps, it should be required for them to be smoothed like natural profiles to estimate gradient values along those sections. However smoothing itself comes with much distortion of raw profile from original DEMs. There has been no research evaluating quantitatively the effects due to smoothing process. Here we attempt to quantify the effects of major smoothing methods on raw and real profiles, suggest a new method to overcome the limitations of them, and evaluate it. This study not only suggests a new smoothing method, but also provides a guideline for choosing a proper smoothing method.

  • PDF

Efficient Meshfree Analysis Using Stabilized Conforming Nodal Integration for Metal Forming Simulation

  • Han, Kyu-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.943-950
    • /
    • 2010
  • An efficient meshfree method based on a stabilized conforming nodal integration method is developed for elastoplastic contact analysis of metal forming processes. In this approach, strain smoothing stabilization is introduced to eliminate spatial instability in Galerkin meshfree methods when the weak form is integrated by a nodal integration. The gradient matrix associated with strain smoothing satisfies the integration constraint for linear exactness in the Galerkin approximation. Strain smoothing formulation and numerical procedures for path-dependent problems are introduced. Applications of metal forming analysis are presented, from which the computational efficiency has been improved significantly without loss of accuracy.

Smooth Edge Images Based on a Multilevel Morphological Filter

  • Yang, S.Q.;Jia, C.Y.
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.95-98
    • /
    • 2001
  • Edge detection is an important problem in computer vision and image understanding. Because the threshold is difficult to properly determine, edge images gained by the usually gradient-based segmentation methods are often tend to have many disjoint or overlapping boundaries, which makes the edge images spinous. In this paper, a practical multilevel morphological filter is presented for smoothing spinous edge images. The experimental results show that the method is effective in dealing with the images of a target in the sky.

  • PDF

Noise reduction method using mean curvature diffusion (평균곡률 확산을 이용한 잡음감소 기법)

  • Ye Chul-Soo;Chung Hun-Suk;Kim Seong-Jong;Hyun Deuk-Chang
    • 한국컴퓨터산업교육학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.87-94
    • /
    • 2003
  • Anisotropic diffusion is a selective smoothing technique that promotes smoothing within a region instead of smoothing across boundaries. In anisotropic diffusion, the rate of smoothing is controlled by the local value of the diffusion coefficient chosen to be a function of the local image gradient magnitude. El-Fallah and Gary E. Ford represented the image as a surface and proved that setting the inhomogeneous diffusion coefficient equal to the inverse of the magnitude of the surface normal results in surface evolving speed that is proportional to the mean curvature of the image surface. This model has the advantage of having the mean curvature diffusion (MCD) render invariant magnitude, thereby preserving structure and locality. In this paper, the proposed MCD model efficiently reduces diffusion coefficient at the thin edges using the smoothness of the surface.

  • PDF

Halftone Noise Removal in Scanned Images using HOG based Adaptive Smoothing Filter (HOG 기반의 적응적 평활화를 이용한 스캔된 영상의 하프톤 잡음 제거)

  • Hur, Kyu-Sung;Baek, Yeul-Min;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.316-324
    • /
    • 2012
  • In this paper, a novel descreening method using HOG(histogram of gradient)-based adaptive smoothing filter is proposed. Conventional edge-oriented smoothing methods does not provide enough smoothing to the halftone image due to the edge-like characteristic of the halftone noise. Moreover, clustered-dot halftoning method, which is commonly used in printing tends to create Moire pattern because of the intereference in color channels. Therefore, the proposed method uses HOG to distinguish edges and the amount of smoothing to be performed on the halftone image is then calculated according to the magnitude of the HOG in the edge and edge normal orientation. The proposed method was tested on various scanned halftone materials, and the results show that it effectively removes halftone noises as well as Moire pattern while preserving image details.

Application of Effective Regularization to Gradient-based Seismic Full Waveform Inversion using Selective Smoothing Coefficients (선택적 평활화 계수를 이용한 그래디언트기반 탄성파 완전파형역산의 효과적인 정규화 기법 적용)

  • Park, Yunhui;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.211-216
    • /
    • 2013
  • In general, smoothing filters regularize functions by reducing differences between adjacent values. The smoothing filters, therefore, can regularize inverse solutions and produce more accurate subsurface structure when we apply it to full waveform inversion. If we apply a smoothing filter with a constant coefficient to subsurface image or velocity model, it will make layer interfaces and fault structures vague because it does not consider any information of geologic structures and variations of velocity. In this study, we develop a selective smoothing regularization technique, which adapts smoothing coefficients according to inversion iteration, to solve the weakness of smoothing regularization with a constant coefficient. First, we determine appropriate frequencies and analyze the corresponding wavenumber coverage. Then, we define effective maximum wavenumber as 99 percentile of wavenumber spectrum in order to choose smoothing coefficients which can effectively limit the wavenumber coverage. By adapting the chosen smoothing coefficients according to the iteration, we can implement multi-scale full waveform inversion while inverting multi-frequency components simultaneously. Through the successful inversion example on a salt model with high-contrast velocity structures, we can note that our method effectively regularizes the inverse solution. We also verify that our scheme is applicable to field data through the numerical example to the synthetic data containing random noise.