
J. Appl. Math. & Informatics Vol. 32(2014), No. 5 - 6, pp. 609 - 619
http://dx.doi.org/10.14317/jami.2014.609

GLOBAL CONVERGENCE METHODS FOR NONSMOOTH

EQUATIONS WITH FINITELY MANY MAXIMUM

FUNCTIONS AND THEIR APPLICATIONS†

DEYAN PANG∗, JINGJIE JU, SHOUQIANG DU

Abstract. Nonsmooth equations with finitely many maximum functions
is often used in the study of complementarity problems, variational in-
equalities and many problems in engineering and mechanics. In this paper,
we consider the global convergence methods for nonsmooth equations with

finitely many maximum functions. The steepest decent method and the
smoothing gradient method are used to solve the nonsmooth equations
with finitely many maximum functions. In addition, the convergence anal-
ysis and the applications are also given. The numerical results for the

smoothing gradient method indicate that the method works quite well in
practice.
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1. Introduction

By the widely used in the problems of image restoration, variable selection,
stochastic equilibrium and optimal control, nonsmooth equations and their re-
lated problems have been widely studied by many authors(see[1-16]). In this
paper, we consider the nonsmooth equations with finitely many maximum func-
tions

max
j∈J1

f1j(x) = 0

... (1)

max
j∈Jn

fnj(x) = 0
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where x ∈ Rn, fij : Rn → R are continuously differentiable functions, j ∈
Ji, i = 1, . . . , n, Ji, i = 1, . . . , n are finite index sets. This system of nonsmooth
equations with finitely many maximum functions has specific application back-
ground, for instance, complementarity problems, variational inequality problems
and many problems in national defense, economic, financial, engineering and
management lead to this system of equations.(see for instance [9-10]). Obvi-
ously, (1) is a system of semismooth equations. For simplicity, we denote

fi(x) = max
j∈Ji

fij(x), x ∈ Rn, i = 1, . . . , n (2)

F (x) = (f1(x), . . . , fn(x))
T , x ∈ Rn (3)

Ji(x) = {j ∈ Ji|fij(x) = fji(x)}, x ∈ Rn, i = 1, . . . , n (4)

Thus, the equations (1) can be briefly written as

F (x) = 0, x ∈ Rn. (5)

The value function of F (x) is defined as

f(x) =
1

2
∥F (x)∥2.

Then, (5) can be solved by solving the following problem

min
x∈Rn

f(x) (6)

We consider using the iterative method for solving (6)

xk+1 = xk + αkdk, k = 0, 1, . . . , .

where αk > 0 is stepsize, dk is a search direction.
This paper is organized as follows. In Section 2, when f is smooth function, we

present the steepest method for solving it and give its global convergence result.
When f is a nonsmooth function, we call it a nondifferentiable problem. There
are many papers (see for instance [4,7,8,12,13,14,15,16]) deal with this problem.
we give the smoothing gradient method for solving it and give the convergence
analysis. In Section 3, we discuss the applications of the methods, this further
illustrated the system of nonsmooth equations with finitely many maximum
functions is related to solve the optimization in theory. In the last section, we
discuss the application of the method for the related minimax optimization. The
numerical results are also given.

Notation. Throughout the paper, ∥.∥ denotes the l2 norm, R+ = {x|x ≥
0, x ∈ R}, gk denote the gradient of f at xk.

2. The methods and their convergence analysis

Case(I). Firstly, when f is smooth function, we give the steepest method for
solving it. The steepest method is one of the most used method for solving
unconstrained optimization (One can see for [11]).
Method 2.1

Step 1. Choose σ1 ∈ (0, 0.5), σ2 ∈ (σ1, 1). Give initial point x0 ∈ Rn, Let
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k := 0.
Step 2. Compute gk = ∇f(xk), let dk = −gk, determine αk by Wolfe line

search, where αk = max{ρ0, ρ1 . . .} and ρi satisfying

f(xk + αkdk) ≤ f(xk) + σ1ρ
igTk dk (7)

and
g(xk + αkdk)

T dk ≥ σ2g
T
k dk (8)

Set xk+1 = xk + αkdk.
Step 3. Let k := k + 1, go to step 2.

The global convergence of the Method 2.1 is given by the following theorem.

Theorem 2.1. Let {xk} generated by the Method 2.1. f(x) is lower bounded.
For any x0 ∈ Rn, ▽f(x) is existence and uniformly continuous on the level set

L(x0) = {x ∈ Rn|f(x) ≤ f(x0)}.
Then we have

lim
k→∞

∥∇f(xk)∥ = 0.

Proof. Suppose that the theorem is not true, then there exist a subsequence
( we still denote the index by k )such that

∥gk∥ ≥ ε > 0.

By dk is a descent direction and (7) , we can see that {f(xk)} is monotonically
decreasing sequence. Since f(xk) is lower bounded. So the limitation of f(xk)
is existence. Thus, we have

f(xk)− f(xk+1) → 0(k → ∞).

Set sk = αkdk. From (7), we know that

0 ≤ −gTk (αkdk) = −gTk sk ≤ 1

σ1
(f(xk)− f(xk+1)) → 0.

Due to the angle between dk and −gk is θk = 0. Then

0 ≤ ∥gk∥∥sk∥ cos θk = −gTk sk → 0.

Note that ∥gk∥ ≥ ε > 0, hence we must have ∥sk∥ → 0.
And because ∇f(x) is uniformly continuous on the level set, we have

∇f(xk+1)
T sk = gTk sk + o(∥sk∥).

That is

lim
k→∞

∇f(xk+1)
T sk

gTk sk
= 1.

This contradiction with (8) and σ2 < 1. So we have

∥gk∥ → 0(k → ∞).

That is
lim
k→∞

∥∇f(xk)∥ = 0.
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Case (II). When f is locally Lipschitz continuous but not necessarily differen-
tiable function. The generalized gradient of f at x is defined by

∂f(x) = conv{ lim
xi→x,xi∈Df

∇f(xi)},

where ”conv” denotes the convex hull of set. Df is the set of points at which f
is differentiable.

Firstly, we introduce the definition of smoothing function.

Definition 2.2 ([3]). Let f : Rn → R be continuous function. We call f̃ :

Rn ×R+ → R a smooth function of f , if f̃(·, µ) is continuously differentiable in
Rn for any fixed µ > 0 and

lim
z→x,µ↓0

f̃(z, µ) = f(x), (9)

for any x ∈ Rn.

In the following, we present a smoothing gradient algorithm for (6).
Method 2.2

Step 1. Choose σ1 ∈ (0, 0.5), σ2 ∈ (σ1, 1) γ > 0 γ1 ∈ (0, 1), give a initial
point x0 ∈ Rn, Let k := 0.

Step 2. Compute gk = ∇f̃(xk, µk), let dk = −gk, determine αk by the Wolfe
line search, where αk = max{ρ0, ρ1 . . .} and ρi satisfying

f̃(xk + αkdk, µk) ≤ f̃(xk, µk) + σ1ρ
igTk dk

and

∇f̃(xk + αkdk, µk)
T dk ≥ σ2g

T
k dk.

Set xk+1 = xk + αkdk.

Step 3. if ∥∇f̃(xk+1, µk)∥ ≥ γµk, then set µk+1 = µk; otherwise, µk+1 =
γ1µk.

Step 4. Let k := k + 1, go to Step 2.

Then, we give the convergence result of Method 2.2.

Theorem 2.3. Suppose that f̃(·, µ) is a smoothing function of f. If for any fixed

µ > 0, f̃(·, µ) satisfies the conditions as in Theorem 2.1, then {xk} generated by
Method 2.2 satisfies

lim
k→∞

µk = 0

and

lim
k→∞

inf ∥∇f̃(xk, µk−1)∥ = 0.
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Proof. Define K = {k|µk+1 = γ1µk}. If K is finite set, then there exists an
interger k̄ such that for all k > k̄

∥∇f̃(xk, µk−1)∥ ≥ γµk−1 (10)

Then µk = µk̄ = µ̄ in step 3 of Method 2.2.

Since f̃(·, µ̄) is a smoothing function, Method 2.2 reduces to solve

min
x∈Rn

f̃(x, µ̄).

Hence, from the above Theorem 2.1, we can deduce that

lim
k→∞

inf ∥∇f̃(xk, µ̄)∥ = 0,

which contradicts with (10). This show that K must be infinite. And we know

lim
k→∞

µk = 0.

Since K is infinite, we can assume that K = {k0, k1, . . .}, where k0 < k1 < . . .
Then we have

lim
i→∞

∥∇f̃(xki+1, µki∥ ≤ γ lim
i→∞

µki = 0.

We get the theorem. �

From above Theorem 2.3 and the gradient consistency discussion in [3,6], we can
get the following result.

Theorem 2.4. Any accumulation point x∗ generated by Method 2.2 is a clarkr
stationary point. This is

0 ∈ ∂f(x∗).

3. The applications of the methods

3.1. Application in solving generalized complementarity problem.
Consider the generalized complementarity problem (GCP) as in [5], Find a
x ∈ Rn such that

F (x) ≥ 0, G(x) ≥ 0, F (x)TG(x) = 0. (11)

where F = (F1, F2, . . . , Fn)
T , G = (G1, G2, . . . , Gn)

T , Fi : R
n → R(i = 1, . . . , n)

and Gi : R
n → R(i = 1, . . . , n) are continuously differentiable functions.

To solve (11) is equivalent to solve the following equations

min{Fi(x), Gi(x)} = 0 (12)

By min(x, y) = x− (x− y)+, we know that (12) is equivalent to

Fi(x)− (Fi(x)−Gi(x))+ = 0 (13)

Let ρ : R → R+ be a piecewise continuous density function satisfying

ρ(s) = ρ(−s)(s ∈ R) and

∫
R

ρ(s)ds = 1. (14)
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Let κ :=
∫∞
−∞ |s|ρ(s)ds < ∞, then for any fixed µ > 0, there is a continuous

function

ϕ(t, µ) :=

∫ ∞

−∞
(t− µs)+ρ(s)ds

satisfying

0 ≤ ϕ(t, µ)− (t)+ ≤ κµ.

From the definition of smoothing function, we know that ϕ(·, µ) is a smoothing
function of (t)+.
Choose

ρ(s) =

{
0, if |s| ≥ 1

2 ;
1, if |s| < 1

2 .

Then

ϕ(t, µ) =

∫ ∞

−∞
(t− µs)+ρ(s)ds =

{
(t)+, if |t| ≥ µ

2 ;
t2

2µ + t
2 + µ

8 , if |t| < µ
2 .

is a smoothing function of (t)+. Then, let t = Fi(x)−Gi(x), i = 1, . . . , n,
we have

ϕ((Fi(x)−Gi(x)), µ) :=

∫ ∞

−∞
((Fi(x)−Gi(x))− µs)+ρ(s)ds

=

{
(Fi(x)−Gi)+, if |Fi(x)−Gi| ≥ µ

2 ;
(Fi(x)−Gi)

2

2µ + Fi(x)−Gi

2 + µ
8 , if |Fi(x)−Gi| < µ

2 .

We know that the smoothing function of Fi(x)− (Fi(x)−Gi(x))+ is

Fi(x)− ϕ((Fi(x)−Gi(x)), µ) i = 1, . . . , n. (15)

So, we can transform (13) into

Fi(x)− ϕ((Fi(x)−Gi(x)), µ) = 0 i = 1, . . . , n. (16)

Then, we can use the Method 2.2 to solve (16).

3.2. Application in solving linear maximum equations. Here, we consider
the equations of maximum functions in [16]. Let F : R → R is a finite equations
of maximum functions,

F (t) = max
i=1,...,m

{fi(t)},

where fi : R → R is a affine linear,

fi(t) = pi(t) + qi,

where pi, qi ∈ R(i = 1, . . . ,m,m ∈ N) are scalars. Follow the affine structure of
F , we know that F is Lipschitz and convex. Generally assumption

p1 < p2 < . . . < pm−1 < pm,m ∈ N. (17)

And there exists −∞ = t1 < t2 < . . . < tm < tm+1 = ∞, such that

piti+1 + qi = pi+1ti+1 + qi+1, ∀ i = 1, . . . ,m− 1. (18)
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And

F (t) =

 p1t+ q1, if t ≤ t2;
pit+ qi, if t ∈ [ti, ti+1];
pmt+ qm, if t ≥ tr i ∈ {2, . . . ,m− 1}.

(19)

For the above linear affine equations of maximum functions, the smoothing func-
tion for the linear equations of maximum functions can be defined as follows.
Let ρ : R → R is a piecewise continuous density function such that

ρ ≥ 0

and ∫
R

|t|ρ(t)dt < +∞.

We define a distribution function that goes with ρ by F ,i.e.,

F : R → [0, 1], F (x) =

∫ x

−∞
ρ(t)dt

Similar to [2], we can find the smoothing function F (t) of this special equations
of maximum functions by convolution

f̃(t, µ) :=

∫
R

F (t− µs)ρ(s)ds (20)

For this linear affine finite equations of maximum functions

F (t) = max
i=1,...,m

{fi(t)} = 0.

Using the above convolution, we can transform it into

f̃(t, µ) = max
i=1,...,m

{f̃i(t, µ)} = 0,

and we can use the Method 2.2 to solve it.

4. Application in related minimax optimization problem

In this section, we consider the minimax optimization problem(see in [15])

min f(x),

where f(x) = maxi=1,...,m fi(x). f1(x), . . . , fm(x) : Rn → R are twice continu-
ous differentiable functions. Minimax problems are widely used in engineering
design, optimal control, circuit design and computer-aided-design. Usually, min-
imax problems can be approached by reformulating them into smooth problems
with constraints or by dealing with the nonsmooth objective directly.

In this paper, we also use the smoothing function (see for instance [15])

f̃(x, µ) = µln

m∑
i=1

exp (
fi(x)

µ
),
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to approximate the function f(x) . In the following, we can see that using the
Method 2.2 to solve the minimax optimization problem works quite well from
the numerical result. We use the examples in [4]. All codes are finished in MAT-
LAB 8.0. Throughout our computational experiments, the parameters used in
the Method 2.2 are chosen as

δ1 = 0.25, δ2 = 0.75, γ = γ1 = 0.5,

In our implementation, we use ∥∆x∥ ≤ 10−5 as the stopping rule. x0 is the ini-
tial point, x∗ is the optimal value point, f(x∗) is optimal value, k is the iterations.

Example 4.1 ([4]).
min max

i=1,2,3
fi(x),

where

f1(x) = x2
1 + x4

2,

f2(x) = (2− x1)
2 + (2− x2)

2,

f3(x) = 2exp(−x1 + x2).

Table 4.1 Numerical results for Example 4.1.

x0 x∗ f(x∗) k
(3.7,-4) (1.139924928941916, 0.898573376287522) 1.955901416401007 63
(1.9,-0.4) (1.139902887689143, 0.898586313882269) 1.955901308067330 60
(2.9,-0.4) (1.139961860026445 , 0.898544495795374) 1.955901637122538 58
(2.7,-1) (1.139960526989222, 0.898545538496570) 1.955901629030341 56
(1.5,-0.7) (1.139897807096254, 0.898598213333535) 1.955901259220984 50
(1,-1) ( 1.139864150412696, 0.898624534951500) 1.955901069399404 49

Example 4.2 ([4]).
min max

i=1,2,3
fi(x),

where

f1(x) = x4
1 + x2

2,

f2(x) = (2− x1)
2 + (2− x2)

2,

f3(x) = 2exp(−x1 + x2).

Consider the following nonlinear programming problem as in [4].

min F (x)

Subject to gi(x) ≥ 0 i = 2, 3, · · · ,m.
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Table 4.2 Numerical results for Example 4.2.

x0 x∗ f(x∗) k
(4,-3.9) (1.000889228841187, 0.997874108053042) 2.007908913059054 79
(3,-2.5) (1.000889228842974, 0.997874108051301) 2.007908913059060 77
(3,-1.8) (1.000889228835420, 0.997874108058792) 2.007908913059036 75
(2.7,3) (1.000889229157946, 0.997874107690151) 2.007908913060094 74

(1.6,-0.8) (1.000889229150102, 0.997874107698151) 2.007908913060069 69
(1,-1) (1.000889228839357, 0.997874108054933 ) 2.007908913059048 72

Bandler and Charalambous (see [1]) proved that for sufficiently large αi, the
optimum of the nonlinear programming problem coincides with the following
minimax function:

f(x) = max
1≤i≤m

fi(x),

where

f1(x) = F (x), fi(x) = F (x)− αigi(x), 2 ≤ i ≤ m, αi > 0,

Example 4.3 (Rosen-Suzuki Problem).

F (x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5 ∗ x2 − 21x3 + 7x4,

g2(x) = −x2
1 − x2

2 − x2
3 − x2

4 − x1 + x2 − x3 + x4 + 8,

g3(x) = −x2
1 − 2x2

2 − x2
3 − 2x2

4 + x1 + x4 + 10,

g4(x) = −x2
1 − x2

2 − x2
3 − 2x1 + x2 + x4 + 5.

Here, we use

α2 = α3 = α4 = 10.

The numerical results for Example 4.3 are listed in Table 4.3.
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