• 제목/요약/키워드: smooth points

검색결과 235건 처리시간 0.021초

Extreme Points, Exposed Points and Smooth Points of the Space 𝓛s(2𝑙3)

  • Kim, Sung Guen
    • Kyungpook Mathematical Journal
    • /
    • 제60권3호
    • /
    • pp.485-505
    • /
    • 2020
  • We present a complete description of all the extreme points of the unit ball of 𝓛s(2𝑙3) which leads to a complete formula for ║f║ for every f ∈ 𝓛s(2𝑙3). We also show that $extB_{{\mathcal{L}}_s(^2l^3_{\infty})}{\subset}extB_{{\mathcal{L}}_s(^2l^n_{\infty})}$ for every n ≥ 4. Using the formula for ║f║ for every f ∈ 𝓛s(2𝑙3), we show that every extreme point of the unit ball of 𝓛s(2𝑙3) is exposed. We also characterize all the smooth points of the unit ball of 𝓛s(2𝑙3).

Smooth Boundary Topology Optimization Using B-spline and Hole Generation

  • Lee, Soo-Bum;Kwak, Byung-Man;Kim, Il-Yong
    • International Journal of CAD/CAM
    • /
    • 제7권1호
    • /
    • pp.11-20
    • /
    • 2007
  • A topology optimization methodology, named "smooth boundary topology optimization," is proposed to overcome the shortcomings of cell-based methods. Material boundary is represented by B-spline curves and their control points are considered as design variables. The design is improved by either creating a hole or moving control points. To determine which is more beneficial, a selection criterion is defined. Once determined to create a hole, it is represented by a new B-spline and recognized as a new boundary. Because the proposed method deals with the control points of B-spline as design variables, their total number is much smaller than cell-based methods and it ensures smooth boundaries. Differences between our method and level set method are also discussed. It is shown that our method is a natural way of obtaining smooth boundary topology design effectively combining computer graphics technique and design sensitivity analysis.

MULTIPLE PERIODIC SOLUTIONS FOR EIGENVALUE PROBLEMS WITH A p-LAPLACIAN AND NON-SMOOTH POTENTIAL

  • Zhang, Guoqing;Liu, Sanyang
    • 대한수학회보
    • /
    • 제48권1호
    • /
    • pp.213-221
    • /
    • 2011
  • In this paper, we establish a multiple critical points theorem for a one-parameter family of non-smooth functionals. The obtained result is then exploited to prove a multiplicity result for a class of periodic eigenvalue problems driven by the p-Laplacian and with a non-smooth potential. Under suitable assumptions, we locate an open subinterval of the eigenvalue.

k- DENTING POINTS AND k- SMOOTHNESS OF BANACH SPACES

  • Wulede, Suyalatu;Shang, Shaoqiang;Bao, Wurina
    • Korean Journal of Mathematics
    • /
    • 제24권3호
    • /
    • pp.397-407
    • /
    • 2016
  • In this paper, the concepts of k-smoothness, k-very smoothness and k-strongly smoothness of Banach spaces are dealt with together briefly by introducing three types k-denting point regarding different topology of conjugate spaces of Banach spaces. In addition, the characterization of first type ${\omega}^*-k$ denting point is described by using the slice of closed unit ball of conjugate spaces.

외곽선이 Smooth 한 객체의 Medial 축 변환에의 새로운 접근 방법 (A New Approach to Medial Axis Transformation of Objects with Smooth Boundary)

  • 위남숙
    • 대한산업공학회지
    • /
    • 제21권4호
    • /
    • pp.571-580
    • /
    • 1995
  • Medial axis transformation is an important concept used in many engineering applications. We propose a new approach to medial axis transformation of 2D objects with smooth boundary. Our approach differs from the traditional ones: we construct the medial axis starting from the inside points, while the previous algorithms started from the boundary points. As a result, previous algorithms are highly sensitive to the small irregularities of the object's boundary curve, while our approach is robust.

  • PDF

LINEAR AUTOMORPHISMS OF SMOOTH HYPERSURFACES GIVING GALOIS POINTS

  • Hayashi, Taro
    • 대한수학회보
    • /
    • 제58권3호
    • /
    • pp.617-635
    • /
    • 2021
  • Let X be a smooth hypersurface X of degree d ≥ 4 in a projective space ℙn+1. We consider a projection of X from p ∈ ℙn+1 to a plane H ≅ ℙn. This projection induces an extension of function fields ℂ(X)/ℂ(ℙn). The point p is called a Galois point if the extension is Galois. In this paper, we will give necessary and sufficient conditions for X to have Galois points by using linear automorphisms.

A WEIERSTRASS SEMIGROUP AT A PAIR OF INFLECTION POINTS WITH HIGH MULTIPLICITIES

  • Kim, Seon Jeong;Kang, Eunju
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제29권4호
    • /
    • pp.353-368
    • /
    • 2022
  • In the previous paper [4], we classified the Weierstrass semigroups at a pair of inflection points of multiplicities d and d - 1 on a smooth plane curve of degree d. In this paper, as a continuation of those results, we classify all semigroups each of which arises as a Weierstrass semigroup at a pair of inflection points of multiplicities d, d - 1 and d - 2 on a smooth plane curve of degree d.