• Title/Summary/Keyword: smart sensing

Search Result 609, Processing Time 0.151 seconds

Strain Sensitivity of Fiber Optic Bragg Grating Sensor (광섬유 브래그 격자 센서의 변형률 감지도)

  • Kwon, Il-Bum;Choi, Man-Yong;Kim, Min-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.237-243
    • /
    • 1999
  • Recently, there has been considerable interest in the development of fiber-optic sensors based on fiber Bragg gratings (FBGs), which can be made into Ge-doped fiber's core by UV phase mask or holographic methods. A good sensitivity and small size of this sensor make it an ideal candidate for distributed sensing in smart structures or other structural monitoring applications. In this study, fiber optic Bragg grating sensor, which could be applied to measure the absolute strains, was constructed and the strain sensitivity of this sensor was investigated in order to apply to the structural health monitoring. Fiber Fabry-Perot (FFP) filter has been used to detect the optical signals instead of optical spectrum analyzer. It has been convenient to determine the structural strains from the output signal of FBGs. The fiber optic Bragg grating sensor was attached on the aluminum beam near the electrical strain gage to measure the same strain. The relationship between strain and fiber signal was linearly fitted. The strain sensitivity of the fiber optic Bragg grating sensor was determined as $l.57{\mu}{\varepsilon}/{\mu}sec$ from the aluminum beam test.

  • PDF

Electromagnetic energy harvesting from structural vibrations during earthquakes

  • Shen, Wenai;Zhu, Songye;Zhu, Hongping;Xu, You-lin
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.449-470
    • /
    • 2016
  • Energy harvesting is an emerging technique that extracts energy from surrounding environments to power low-power devices. For example, it can potentially provide sustainable energy for wireless sensing networks (WSNs) or structural control systems in civil engineering applications. This paper presents a comprehensive study on harvesting energy from earthquake-induced structural vibrations, which is typically of low frequency, to power WSNs. A macroscale pendulum-type electromagnetic harvester (MPEH) is proposed, analyzed and experimentally validated. The presented predictive model describes output power dependence with mass, efficiency and the power spectral density of base acceleration, providing a simple tool to estimate harvested energy. A series of shaking table tests in which a single-storey steel frame model equipped with a MPEH has been carried out under earthquake excitations. Three types of energy harvesting circuits, namely, a resistor circuit, a standard energy harvesting circuit (SEHC) and a voltage-mode controlled buck-boost converter were used for comparative study. In ideal cases, i.e., resistor circuit cases, the maximum electric energy of 8.72 J was harvested with the efficiency of 35.3%. In practical cases, the maximum electric energy of 4.67 J was extracted via the buck-boost converter under the same conditions. The predictive model on output power and harvested energy has been validated by the test data.

A low cost miniature PZT amplifier for wireless active structural health monitoring

  • Olmi, Claudio;Song, Gangbing;Shieh, Leang-San;Mo, Yi-Lung
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.365-378
    • /
    • 2011
  • Piezo-based active structural health monitoring (SHM) requires amplifiers specifically designed for capacitive loads. Moreover, with the increase in number of applications of wireless SHM systems, energy efficiency and cost reduction for this type of amplifiers is becoming a requirement. General lab grade amplifiers are big and costly, and not built for outdoor environments. Although some piezoceramic power amplifiers are available in the market, none of them are specifically targeting the wireless constraints and low power requirements. In this paper, a piezoceramic transducer amplifier for wireless active SHM systems has been designed. Power requirements are met by two digital On/Off switches that set the amplifier in a standby state when not in use. It provides a stable ${\pm}180$ Volts output with a bandwidth of 7k Hz using a single 12 V battery. Additionally, both voltage and current outputs are provided for feedback control, impedance check, or actuator damage verification. Vibration control tests of an aluminum beam were conducted in the University of Houston lab, while wireless active SHM tests of a wind turbine blade were performed in the Harbin Institute of Technology wind tunnel. The results showed that the developed amplifier provided equivalent results to commercial solutions in suppressing structural vibrations, and that it allows researchers to perform active wireless SHM on moving objects with no power wires from the grid.

Development of a low-cost multifunctional wireless impedance sensor node

  • Min, Jiyoung;Park, Seunghee;Yun, Chung-Bang;Song, Byunghun
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.689-709
    • /
    • 2010
  • In this paper, a low cost, low power but multifunctional wireless sensor node is presented for the impedance-based SHM using piezoelectric sensors. Firstly, a miniaturized impedance measuring chip device is utilized for low cost and low power structural excitation/sensing. Then, structural damage detection/sensor self-diagnosis algorithms are embedded on the on-board microcontroller. This sensor node uses the power harvested from the solar energy to measure and analyze the impedance data. Simultaneously it monitors temperature on the structure near the piezoelectric sensor and battery power consumption. The wireless sensor node is based on the TinyOS platform for operation, and users can take MATLAB$^{(R)}$ interface for the control of the sensor node through serial communication. In order to validate the performance of this multifunctional wireless impedance sensor node, a series of experimental studies have been carried out for detecting loose bolts and crack damages on lab-scale steel structural members as well as on real steel bridge and building structures. It has been found that the proposed sensor nodes can be effectively used for local wireless health monitoring of structural components and for constructing a low-cost and multifunctional SHM system as "place and forget" wireless sensors.

APPLICATION OF BRILLOUIN SCATTERING SENSOR FOR SLOPE MOVEMENT (광 산란파에 의한 사면거동 예측)

  • Chang, Ki-Tae;Lee, Sang-Deok;Yoo, Byung-Sun
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.4
    • /
    • pp.269-276
    • /
    • 2004
  • Optical fiber sensors have shown a potential to serve real time health monitoring of the structures. They can be easily embedded or attached to the structures and are not affected by the electro-magnetic field. Furthermore, they have the flexibility of the sensor size and very highly sensitive. In this study, we conducted several laboratory and field tests using a novel optical sensor based on Brillouin scattering. One of the advantages of this technique is that the bare fiber itself acts as sensing element without any special fiber processing or preparation. Test results have shown that BOTDR can be a great solution for sensor systems of Civil Engineering Smart Structures.

  • PDF

Virtual In-situ Sensor Calibration and the Application in Unitary Air Conditioners (유닛형 공기조화기 센서의 가상보정 방법 및 적용 특성 분석)

  • Yoon, Sungmin;Kim, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.6
    • /
    • pp.65-72
    • /
    • 2018
  • Since data-driven building technologies have been widely applied to building energy systems, the accuracy of building sensors has more impacts on the building performance and system performance analysis. Various building sensors, however, can have typical errors including a random error (noise) and a systematic error (bias). The systematic error is indicated by the difference between the mean of measurements and their true value. It may occur due to the sensor's physical condition, measured phenomena, working environments inside the systems. Unfortunately, a conventional calibration method has limitations in calibrating the systematic errors because of the difference between working environments and calibration conditions. In such situations, a novel sensor calibration method is needed to handle various sensor errors, especially for systematic errors, in building energy systems having various thermodynamic environments. This study proposes a building sensor calibration method named Virtual In-situ Calibration (VIC) and shows how it is applied into a real building system and how it solves the sensor errors.

Biogenic Volatile Compounds for Plant Disease Diagnosis and Health Improvement

  • Sharifi, Rouhallah;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.459-469
    • /
    • 2018
  • Plants and microorganisms (microbes) use information from chemicals such as volatile compounds to understand their environments. Proficiency in sensing and responding to these infochemicals increases an organism's ecological competence and ability to survive in competitive environments, particularly with regard to plant-pathogen interactions. Plants and microbes acquired the ability to sense and respond to biogenic volatiles during their evolutionary history. However, these signals can only be interpreted by humans through the use of state-of the-art technologies. Newly-developed tools allow microbe-induced plant volatiles to be detected in a rapid, precise, and non-invasive manner to diagnose plant diseases. Beside disease diagnosis, volatile compounds may also be valuable in improving crop productivity in sustainable agriculture. Bacterial volatile compounds (BVCs) have potential for use as a novel plant growth stimulant or as improver of fertilizer efficiency. BVCs can also elicit plant innate immunity against insect pests and microbial pathogens. Research is needed to expand our knowledge of BVCs and to produce BVC-based formulations that can be used practically in the field. Formulation possibilities include encapsulation and sol-gel matrices, which can be used in attract and kill formulations, chemigation, and seed priming. Exploitation of biogenic volatiles will facilitate the development of smart integrated plant management systems for disease control and productivity improvement.

Design and Implementation of Safety system to prevent human accidents caused by low-speed vehicles (저속 주행 자동차에 의한 인명 사고 예방을 위한 안전 시스템의 설계 및 구현)

  • Kim, Hongsan;Mun, Taeeun;Paik, Seungmin;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.55-63
    • /
    • 2019
  • Proximity sensors and rearview cameras for automobile safety are common, but many accidents are still occurring. Using the All Around View and object recognition algorithm to show the front, back, left, right and bottom of the vehicle, the sensor detects the presence of a living body when the vehicle starts or parks, and displays the outside of the vehicle on the screen. In addition, the object recognition algorithm is used to visualize the object by expressing the position of the object. In this way, we propose a strong safety system that can prevent human accidents caused by the vehicle by sensing, screen, and expression.

Recent Progress of Smart Sensor Technology Relying on Artificial Intelligence (인공지능 기반의 스마트 센서 기술 개발 동향)

  • Shin, Hyun Sik;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.1-12
    • /
    • 2022
  • With the rapid development of artificial intelligence technology that gives existing sensors functions similar to human intelligence is drawing attention. Previously, researches were mainly focused on an improvement of fundamental performance indicators as sensors. However, recently, attempts to combine artificial intelligence such as classification and prediction with sensors have been explored. Based on this, intelligent sensor research has been actively reported in almost all kinds of sensing fields such as disease detection, motion detection, and gas sensor. In this paper, we introduce the basic concepts, types, and driving mechanisms of artificial intelligence and review some examples of its use.

Study on Big Data Linkage Method for Managing Port Infrastructure Disasters and Aging (항만 인프라 재해 및 노후화 관리를 위한 빅데이터 연계 방안 연구)

  • Choi, Woo-geun;Park, Sun-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.134-137
    • /
    • 2021
  • This study aims to develop a digital twin and big data-based port infrastructure control system that reflects smart maintenance technology. It is a technology that can evaluate aging and disaster risk by converting heterogeneous data such as sensing data and image data acquired from port infrastructure into big data, visualized in a digital twin-based control system, and comprehensively analyzed. The meaning of big data to express the physical world and processes by combining data, which are the core components of the virtual world, and the matters to be reflected in each stage of securing, processing, storing, analyzing and utilizing necessary big data, and we would like to define methods for linking with IT resources.

  • PDF