• Title/Summary/Keyword: smart problem

Search Result 1,627, Processing Time 0.023 seconds

Technology Trends in Digital Twins for Smart Cities (스마트 도시 실현을 위한 디지털 트윈 기술 동향)

  • Chang, Y.S.;Jang, I.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.1
    • /
    • pp.99-108
    • /
    • 2021
  • Digital twins are digital replicas of objects and systems in the real world. These digital replicas in a virtual environment can be connected with smart sensors and a variety of analyses, and simulations of real-time data from these sensors enable effective the operation, rapid feedback, and future predictions of real world phenomena. Until now, digital twins have been adopted and used mainly in the field of manufacturing, especially for smart factories. As digital twins are expected to be useful not only for productivity improvement but also for social problem solving, it is predicted that they will be extended to other fields such as those of transportation and cities. Digital twins will especially help realize smart cities through real-time monitoring, operation, and predictions using virtual digital twin cities. This paper summarizes the trends in digital twins for smart cities, the concept of digital twins, their application to smart cities, the strategies of various countries, and the development status of companies.

Smart Fog : Advanced Fog Server-centric Things Abstraction Framework for Multi-service IoT System (Smart Fog : 다중 서비스 사물 인터넷 시스템을 위한 포그 서버 중심 사물 추상화 프레임워크)

  • Hong, Gyeonghwan;Park, Eunsoo;Choi, Sihoon;Shin, Dongkun
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.710-717
    • /
    • 2016
  • Recently, several research studies on things abstraction framework have been proposed in order to implement the multi-service Internet of Things (IoT) system, where various IoT services share the thing devices. Distributed things abstraction has an IoT service duplication problem, which aggravates power consumption of mobile devices and network traffic. On the other hand, cloud server-centric things abstraction cannot cover real-time interactions due to long network delay. Fog server-centric things abstraction has limits in insufficient IoT interfaces. In this paper, we propose Smart Fog which is a fog server-centric things abstraction framework to resolve the problems of the existing things abstraction frameworks. Smart Fog consists of software modules to operate the Smart Gateway and three interfaces. Smart Fog is implemented based on IoTivity framework and OIC standard. We construct a smart home prototype on an embedded board Odroid-XU3 using Smart Fog. We evaluate the network performance and energy efficiency of Smart Fog. The experimental results indicate that the Smart Fog shows short network latency, which can perform real-time interaction. The results also show that the proposed framework has reduction in the network traffic of 74% and power consumption of 21% in mobile device, compared to distributed things abstraction.

Construction of a Remote Monitoring System in Smart Dust Environment

  • Park, Joonsuu;Park, KeeHyun
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.733-741
    • /
    • 2020
  • A smart dust monitoring system is useful for obtaining information on rough terrain that is difficult for humans to access. One of ways to deploy sensors to gather information in smart dust environment is to use an aircraft in the Amazon rainforest to scatter an enormous amount of small and cheap sensors (or smart dust devices), or to use an unmanned spacecraft to throw the sensors on the moon's surface. However, scattering an enormous amount of smart dust devices creates the difficulty of managing such devices as they can be scattered into inaccessible areas, and also causes problems such as bottlenecks, device failure, and high/low density of devices. Of the various problems that may occur in the smart dust environment, this paper is focused on solving the bottleneck problem. To address this, we propose and construct a three-layered hierarchical smart dust monitoring system that includes relay dust devices (RDDs). An RDD is a smart dust device with relatively higher computing/communicating power than a normal smart dust device. RDDs play a crucial role in reducing traffic load for the system. To validate the proposed system, we use climate data obtained from authorized portals to compare the system with other systems (i.e., non-hierarchical system and simple hierarchical system). Through this comparison, we determined that the transmission processing time is reduced by 49%-50% compared to other systems, and the maximum number of connectable devices can be increased by 16-32 times without compromising the system's operations.

Improvement of RRT*-Smart Algorithm for Optimal Path Planning and Application of the Algorithm in 2 & 3-Dimension Environment (최적 경로 계획을 위한 RRT*-Smart 알고리즘의 개선과 2, 3차원 환경에서의 적용)

  • Tak, Hyeong-Tae;Park, Cheon-Geon;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • Optimal path planning refers to find the safe route to the destination at a low cost, is a major problem with regard to autonomous navigation. Sampling Based Planning(SBP) approaches, such as Rapidly-exploring Random Tree Star($RRT^*$), are the most influential algorithm in path planning due to their relatively small calculations and scalability to high-dimensional problems. $RRT^*$-Smart introduced path optimization and biased sampling techniques into $RRT^*$ to increase convergent rate. This paper presents an improvement plan that has changed the biased sampling method to increase the initial convergent rate of the $RRT^*$-Smart, which is specified as m$RRT^*$-Smart. With comparison among $RRT^*$, $RRT^*$-Smart and m$RRT^*$-Smart in 2 & 3-D environments, m$RRT^*$-Smart showed similar or increased initial convergent rate than $RRT^*$ and $RRT^*$-Smart.

Integrated Optimal Design of Smart Connective Control System and Connected Buildings (스마트 연결 제어 시스템과 연결 구조물의 통합 최적 설계)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.43-50
    • /
    • 2019
  • A smart connective control system was invented recently for coupling control of adjacent buildings. Previous studies on this topic focused on development of control algorithm for the smart connective control system and design method of control device. Usually, a smart control devices are applied to building structures after structural design. However, because structural characteristics of building structure with control devices changes, a iterative design is required for optimal design. To defeat this problem, an integrated optimal design method for a smart connective control system and connected buildings was proposed. For this purpose, an artificial seismic load was generated for control performance evaluation of the smart coupling control system. 20-story and 12-story adjacent buildings were used as example structures and an MR (magnetorheological) damper was used as a smart control device to connect adjacent two buildings. NSGA-II was used for multi-objective integrated optimization of structure-smart control device. Numerical simulation results show the integrated optimal design method proposed in this study can provide various optimal designs for smart connective control system and connected buildings presenting good control performance.

Data Abstraction in Battlefield Smart Maps Based on QR Tags (QR 태그 기반 전장 스마트 지도에서의 자료 추상화)

  • Kwak, Noh Sup;Yun, Young-Sun;Jung, Jinman;So, Sun Sup;Eun, Seongbae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.440-446
    • /
    • 2020
  • The application field of smart terminals is increasing and its application is also spreading in the defense field. The use of smart terminal based map application is very important in battle fields. The problem is that the communication infrastructure is easy to collapse and the use of GPS is usually disturbed. In this paper, we studied the maps stored in the QR tag at the battle field. The problem is to abstract the map information so that it can be stored in the small QR tag. We have abstracted path information on a vector basis and require only a small amount of data compared to imaged path information. We analyzed the amount of data generated by the abstraction and mathematically analyzed the boundary where the amount does not exceed the capacity limit of the QR tag. Our research can be applied not only to battlefields, but also to disaster / disaster scenes, or in environments with difficult Internet communications, such as mountainous areas.

Design for Smart Safety Management System: from Worker and Mobile Equipment Perspectives (시스템엔지니어링 기반의 스마트 안전관리 시스템설계: 작업자와 이동 장비를 중심으로)

  • Kim, Hyoung Min;Yoon, Sung Jae;Hong, Dae Guen;Suh, Suk-Hwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.2
    • /
    • pp.41-49
    • /
    • 2015
  • Industrial safety is one of the crucial agenda for Government as well as Manufacturing Industry. To cope with the needs, a great deal of policies and technical implementation have been proposed and implemented. With a great increasing attention on the Industry 4.0 and Smart Factory, industrial safety has received as a crucial agenda by the manufacturing industry in particular. Up until now, almost all of them have been made from the environmental aspects, rather than operator or workers. In this paper, we present our research results how to increase the workers' safety via smart factory technology, such as IoT and CPS. Our approach has been to see the problem from SE perspectives, to draw the real issues from the various stakeholders, and define how to solve the problem based on the emerging technologies. The developed systems can give conceptual framework for the 'smart' industrial safety system by providing solution architecture for how to monitor the location of workers, and moving equipments, and generate solutions how to avoid safety problems between them if detected.

A Study on the Development of Power Control Wireless Interface Module for Demand_Response using IEEE1451.5 (IEEE1451.5 기반의 전원 제어용 무선 DR_인터페이스 장치 개발에 관한 연구)

  • Lee, Joung-Han;Choi, In-Ho;Ryu, Joong-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1192-1196
    • /
    • 2009
  • Recently, the environment contamination problem and energy saving are the social issues. So, the Green IT based Smart Grid was suggested. The smart grid will let rates fluctuate even more dynamically, depending on conditions using energy. Thus, green IT includes the dimensions of environmental sustainability and the economics of energy efficiency. The smart controller in which it is controlled by DR in order to manage the energy consumption by using AMI is needed in order to apply its technology to the real life. In this paper, DR_WTIM of the IEEE1451.5 base which has the DR function for connecting to AMI of the wireless base is developed. By using this apparatus for the power control system, the energy saving effect is shown. Moreover, by using the IEEE1451.5 technology, the problem of energy consumption is solved in order to apply to power controller designed for efficient use energy.

A Study on the Optimization of Power Consumption Pattern using Building Smart Microgrid Test-Bed (Building Smart Microgrid Test-Bed를 이용한 전력사용량 패턴 최적화방안 연구)

  • Lee, Sang-Woo;Kang, Jin-Kyu;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • The microgrid system is the combination of photovoltaic(PV) array, load, and battery energy storage system. The control strategies were defined as multi-modes of operation, including rest operation without use of battery, power charging, and power discharging, which enables grid connected mode or islanded mode. Photovoltaic power is a problem of the uniformity of power quality because the power generated from solar light is very sensitive to variation of insolation and duration of sunshine. As a solution to the above problem, energy storage system(ESS) is considered generally. There fore, in this study, we did basic research activities about optimization method of the amount of energy used, using a smart microgrid test-bed constructed in building. First, we analyzed the daily, monthly and period energy pattern amount of power energy used, and analyzed PV power generation level which is built on the roof. Utilizing building energy pattern analysis data, we was studied an efficient method of employing the ESS about building power consumption pattern and PV generation.

A Study on the Development of a Continuously Variable Transmission for Bicycles by Theory of Inventive Problem Solving (TRIZ) (창의적 문제 해결이론(트리즈)을 이용한 자전거용 무단 변속장치의 개발)

  • Lee, Kun-Sang;Choi, Jun-Ho;Yoo, Byung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.75-82
    • /
    • 2007
  • This paper represents a study on the development of the conceptual design for the bicycle transmission by TRIZ. At first the problem of the transmission of commercial bicycles was analyzed. The problem was defined as "the variable sprocket pitch diameter with respect to the tension change of chain". The conceptual solutions were derived by Su-Field Model Analysis, IFR(Ideal Final Result), SLP(Smart Little People), and Contradiction Matrix. The here developed sprocket prototype shows the automatic change of sprocket pitch diameter with the tension change of chain.