• 제목/요약/키워드: smart pattern recognition

검색결과 89건 처리시간 0.025초

Synergetics based damage detection of frame structures using piezoceramic patches

  • Hong, Xiaobin;Ruan, Jiaobiao;Liu, Guixiong;Wang, Tao;Li, Youyong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • 제17권2호
    • /
    • pp.167-194
    • /
    • 2016
  • This paper investigates the Synergetics based Damage Detection Method (SDDM) for frame structures by using surface-bonded PZT (Lead Zirconate Titanate) patches. After analyzing the mechanism of pattern recognition from Synergetics, the operating framework with cooperation-competition-update process of SDDM was proposed. First, the dynamic identification equation of structural conditions was established and the adjoint vector (AV) set of original vector (OV) set was obtained by Generalized Inverse Matrix (GIM).Then, the order parameter equation and its evolution process were deduced through the strict mathematics ratiocination. Moreover, in order to complete online structural condition update feature, the iterative update algorithm was presented. Subsequently, the pathway in which SDDM was realized through the modified Synergetic Neural Network (SNN) was introduced and its assessment indices were confirmed. Finally, the experimental platform with a two-story frame structure was set up. The performances of the proposed methodology were tested for damage identifications by loosening various screw nuts group scenarios. The experiments were conducted in different damage degrees, the disturbance environment and the noisy environment, respectively. The results show the feasibility of SDDM using piezoceramic sensors and actuators, and demonstrate a strong ability of anti-disturbance and anti-noise in frame structure applications. This proposed approach can be extended to the similar structures for damage identification.

V-ROI를 이용한 고효율 실시간 차선 인식 알고리즘 (Efficient Real-time Lane Detection Algorithm Using V-ROI)

  • ;이찬호
    • 전기전자학회논문지
    • /
    • 제16권4호
    • /
    • pp.349-355
    • /
    • 2012
  • 자동차가 IT 기술과 융합되면서 편의성과 안전성 그리고 성능이 좋아지고 있다. 이와 관련하여 최근 자동차의 주행시 안전 및 주변 환경과 관련된 정보를 제공하기 위한 많은 알고리즘이 연구되고 있으며 차선 인식 또한 그 중 하나이다. 본 논문에서는 입력된 영상에서 차선 경계선을 인식한 뒤 ROI를 경계선 주변으로 제한하여 연산량을 줄이는 알고리즘을 제안한다. 제안된 알고리즘에서는 선처리 과정을 통해 차선 경계선으로 추정되는 영역의 주변만을 ROI로 지정하는 V-ROI를 이용하여 연산 영역을 줄이고 이를 통해 연산량과 연산 시간을 줄인다. 또한 차선 인식의 경우 고해상도의 영상이 필요하지 않으므로 입력 영상을 축소하여 차선 인식 알고리즘을 적용하는 방법을 통하여 영상의 해상도에 관계없이 연산량을 비슷하게 유지할 수 있다. 제안한 알고리즘을 C++와 OpenCV 라이브러리를 이용하여 구현하였으며 초당 30 프레임 이상을 처리하는 실시간 동작을 확인하였다.

SHM data anomaly classification using machine learning strategies: A comparative study

  • Chou, Jau-Yu;Fu, Yuguang;Huang, Shieh-Kung;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.77-91
    • /
    • 2022
  • Various monitoring systems have been implemented in civil infrastructure to ensure structural safety and integrity. In long-term monitoring, these systems generate a large amount of data, where anomalies are not unusual and can pose unique challenges for structural health monitoring applications, such as system identification and damage detection. Therefore, developing efficient techniques is quite essential to recognize the anomalies in monitoring data. In this study, several machine learning techniques are explored and implemented to detect and classify various types of data anomalies. A field dataset, which consists of one month long acceleration data obtained from a long-span cable-stayed bridge in China, is employed to examine the machine learning techniques for automated data anomaly detection. These techniques include the statistic-based pattern recognition network, spectrogram-based convolutional neural network, image-based time history convolutional neural network, image-based time-frequency hybrid convolution neural network (GoogLeNet), and proposed ensemble neural network model. The ensemble model deliberately combines different machine learning models to enhance anomaly classification performance. The results show that all these techniques can successfully detect and classify six types of data anomalies (i.e., missing, minor, outlier, square, trend, drift). Moreover, both image-based time history convolutional neural network and GoogLeNet are further investigated for the capability of autonomous online anomaly classification and found to effectively classify anomalies with decent performance. As seen in comparison with accuracy, the proposed ensemble neural network model outperforms the other three machine learning techniques. This study also evaluates the proposed ensemble neural network model to a blind test dataset. As found in the results, this ensemble model is effective for data anomaly detection and applicable for the signal characteristics changing over time.

Hybrid machine learning with mode shape assessment for damage identification of plates

  • Pei Yi Siow;Zhi Chao Ong;Shin Yee Khoo;Kok-Sing Lim;Bee Teng Chew
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.485-500
    • /
    • 2023
  • Machine learning-based structural health monitoring (ML-based SHM) methods are researched extensively in the recent decade due to the availability of advanced information and sensing technology. ML methods are well-known for their pattern recognition capability for complex problems. However, the main obstacle of ML-based SHM is that it often requires pre-collected historical data for model training. In most actual scenarios, damage presence can be detected using the unsupervised learning method through anomaly detection, but to further identify the damage types would require prior knowledge or historical events as references. This creates the cold-start problem, especially for new and unobserved structures. Modal-based methods identify damages based on the changes in the structural global properties but often require dense measurements for accurate results. Therefore, a two-stage hybrid modal-machine learning damage detection scheme is proposed. The first stage detects damage presence using Principal Component Analysis-Frequency Response Function (PCA-FRF) in an unsupervised manner, whereas the second stage further identifies the damage. To solve the cold-start problem, mode shape assessment using the first mode is initiated when no trained model is available yet in the second stage. The damage identified by the modal-based method would be stored for future training. This work highlights the performance of the scheme in alleviating the cold-start issue as it transitions through different phases, starting from zero damage sample available. Results showed that single and multiple damages can be identified at an acceptable accuracy level even when training samples are limited.

IOT를 이용한 소규모 공간의 융합 잠금 장치 제안 (Design of Small Space Convergence Locking device Using IoT)

  • 박현주
    • 한국융합학회논문지
    • /
    • 제12권2호
    • /
    • pp.45-50
    • /
    • 2021
  • 본 논문에서는 IoT를 이용하여 원격 개폐가 가능한 스마트 공간 보안에 대한 장치 개발을 제안한다. 기존의 공간 보안 장치는 하드웨어를 부수거나 버튼 장치 또는 복제된 열쇠를 사용하여 개폐를 제어할 수 있었다. 최근 COVID-19 사태로 비접촉 장치에 대한 여러 응용 분야가 생겨났다. 본 연구에서는 장치에 접촉하지 않아도 앱을 통해 잠금을 해제 하는 기능을 가진 소형 공간 보안 장치 개발을 제안한다. 제어의 권한을 스마트폰으로 이전하여 사용자의 선택에 따라 하드웨어 조작만으로는 개폐할 수 없는 기능을 가진 장치를 고안하였다. 잠금 장치 접촉을 하지 않아도 앱을 이용하여 개폐가 가능하므로 편리하고 위생적이다. 스마트폰의 지문 인식 및 패턴 입력으로 사용자 인증 후 앱을 이용하므로 다중보안 기능을 가지고 있다. 사용자가 원한다면 앱 보안 해제 후 금고 또는 공간에 장착된 버튼을 직접 터치하거나 열쇠로 열면 보안이 해제된다. 또한 앱에 비활성 기능을 추가시켜 열쇠를 분실하거나 소형의 금고를 분실했을 경우 사용이 불가능하게 되어 금고의 문이 열리지 않도록 설계하였다. 본 연구는 보안이 필요한 사물에 다양하게 응용하여 효과적으로 확장할 수 있을 것으로 기대한다.

MobileNetV3 기반 요검사 서비스 어플리케이션 구현 (Implementation of Urinalysis Service Application based on MobileNetV3)

  • 박기조;최승환;김경석
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권4호
    • /
    • pp.41-46
    • /
    • 2023
  • 인체 소변은 혈액 내의 노폐물을 배출하는 과정으로 채취가 쉽고 다양한 물질들이 포함되어 있습니다. 요검사는 이를 통해 질병, 건강상태, 요로 감염 여부 등을 확인하는 용도로 사용됩니다. 요검사에는 물리적 성상 검사, 화학적 검사, 현미경 검사의 세 가지 방법이 있으며, 화학적 검사는 요검사지를 사용하여 쉽게 결과를 확인할 수 있다. 요검사지에는 다양한 항목들을 검사할 수 있으며, 이를 통해 다양한 질병들을 확인할 수 있다. 최근 스마트폰의 보급으로 스마트폰을 이용한 요검사지 판독 연구가 진행되고 있다. 스마트폰을 이용하여 요검사지의 색 변화를 감지하고 판독하는 방법이 있다. 이러한 방법은 RGB값과 색 차이 공식을 사용하여 판별한다. 그러나 다양한 환경 요인으로 인해 정확도가 떨어지는 문제가 있다. 본 논문은 이러한 문제를 해결하기 위해 딥러닝 모델을 적용한다. 특히, 경량화된 CNN(Convolutional Neural Networks) 모델을 사용하여 스마트폰 내에서 요검사지의 색 판별을 개선한다. CNN은 이미지 인식과 패턴 찾기에 유용한 모델로, 경량화된 버전도 사용 가능하다. 이를 통해 스마트폰에서 딥러닝 모델을 운영하고 정확한 요검사지 결과를 추출할 수 있다. 요검사지는 다양한 환경에서 촬영하여 딥러닝 모델 학습 이미지를 준비 하였으며 MobileNet V3을 사용하여 요검사 서비스 어플리케이션을 설계하였다.

KB국민카드의 빅데이터를 활용한 실시간 CRM 전략: 스마트 오퍼링 시스템 (Real-time CRM Strategy of Big Data and Smart Offering System: KB Kookmin Card Case)

  • 최재원;손봉진;임현아
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.1-23
    • /
    • 2019
  • 소비자의 니즈가 다양해지면서 데이터 마이닝과 고도화된 고객관계관리(CRM) 기법을 활용한 체계적인 마케팅 서비스를 제공하는 기업이 증가하고 있으며, KB국민카드는 고객의 결제 데이터 등을 활용하여 고객 개개인의 니즈를 충족시키고 소비자의 평생가치를 극대화하기 위한 전략을 강조하고 있다. 실시간으로 고객의 카드이용과 고객 행동, 위치 정보 등을 감지하여 진행하는 고효율 마케팅 운영시스템인 스마트 오퍼링 시스템을 운영하고 있으며, 다양한 앱 등과 결합하여 더욱 정교화된 서비스를 제공하고 있다. KB국민카드는 스마트 오퍼링 시스템의 성공과 지속적인 성장을 위해 고도화되고 있는 ICT 기술과 인재 확보를 위한 투자를 진행해야 하며, 장기적인 관점에서의 수익확보를 위한 전략을 확립하여 체계적인 진행이 필요하다. 특히, 프라이버시 침해와 개인정보 유출 등의 문제가 쟁점이 되는 현재 상황에서 고객 정보를 활용한 마케팅에 대한 고객의 인식을 긍정적으로 유도하고, 보안성을 강조하는 기업 이미지 형성을 위한 노력이 필요하다. 본 연구는 CRM 전략의 변화 과정을 통해 현재 카드사의 실시간 CRM 전략을 KB 국민카드의 빅데이터 활용전략과 마케팅 활동을 통해 확인하고자 한다.

인공신경망 기반 온실 외부 온도 예측을 통한 난방부하 추정 (Outside Temperature Prediction Based on Artificial Neural Network for Estimating the Heating Load in Greenhouse)

  • 김상엽;박경섭;류근호
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권4호
    • /
    • pp.129-134
    • /
    • 2018
  • 최근, 인공신경망 모델은 예측, 수치제어, 로봇제어, 패턴인식 등의 분야에서 촉망되는 기술이다. 본 연구에서는 인공신경망 모델을 이용하여 온실 외부 온도를 예측하고 이를 온실제어에 활용하는데 목적이 있다. 예측 모델의 성능 평가를 위해 다중회귀모델과 SVM 모델과의 비교분석을 수행하였다. 평가 방법으로는 10-Fold Cross Validation을 사용하였으며, 예측 성능 향상을 위해 상관관계분석 통해 데이터 축소를 수행하였고, 측정 데이터로부터 새로운 Factor 추출하여 데이터의 신뢰성을 확보하였다. 인공신경망 구축을 위해 Backpropagation algorithm을 사용하였으며, 다중회귀모델은 M5 method로 구축하였고, SVM 모델을 epsilon-SVM으로 구축하였다. 각 모델의 비교분석 결과 각각 0.9256, 1.8503과 7.5521로 나타났다. 또한 예측모델을 온실 난방부하 계산에 적용함으로써 온실에 사용되는 에너지 비용 절감을 통한 수입증대에 기여할 수 있다. 실험한 온실의 난방부하는 3326.4kcal/h이며, 총 난방시간이 $10000^{\circ}C/h$일 때 연료소비량은 453.8L로 예측된다. 아울러 데이터 마이닝 기술 중 하나인 인공신경망을 정밀온실제어, 재배기법, 수확예측 등 다양한 농업 분야에 적용함으로써 스마트 농업으로의 발전에 기여할 수 있다.

스마트 폰을 사용한 움직임 패턴 기반 넘어짐 감지 (Fall Detection for Mobile Phone based on Movement Pattern)

  • 보비에트;황민탕;이창무;최덕재
    • 인터넷정보학회논문지
    • /
    • 제13권4호
    • /
    • pp.23-31
    • /
    • 2012
  • 인간의 동작 인식은 건강관리, 상황기반 응용 등 실제적인 삶의 여러 부분에서 이용할 수 있기 때문에 중요한 주제이다. 건강관리를 위한 조언을 제공하는데 사용될 수 있기 때문에 동작인식 중 일상생활 동작인식이 주로 연구되고 있다. 특별히 넘어짐은 심장문제로 발생할 수 있기 때문에 넘어짐 인식은 독거 노인의 건강한 삶에 중요한 역할을 할 수 있다. 넘어짐 인식은 여전히 어려운 연구과제이다. 넘어짐 인식을 위해 몸에 여러 종류의 센서를 부착하는 시스템이 제안되었지만 이는 사용자가 센서를 부착하는 것을 잊어버리거나 이런 시스템에 익숙하지 않기 때문에 유용성에 문제가 있다. 본 연구에서는 사용자가 휴대하고 있는 스마트 폰 내의 가속도 및 자이로센서 값의 변화를 분석하여 알려진 넘어짐 패턴과 유사성을 분석하여 넘어짐을 판단하는 방법을 제안한다. 이 연구를 위해 5명의 자원자를 모집하여 다양한 종류의 넘어짐을 실험하였다. 실험결과는 본 연구를 통해서 넘어짐 인식을 위한 제안한 방식이 유효하다는 것을 보여준다. 실험 알고리즘은 많이 사용되고 있는 G1 스마트 폰 위에 구현하였다.