This paper investigates the Synergetics based Damage Detection Method (SDDM) for frame structures by using surface-bonded PZT (Lead Zirconate Titanate) patches. After analyzing the mechanism of pattern recognition from Synergetics, the operating framework with cooperation-competition-update process of SDDM was proposed. First, the dynamic identification equation of structural conditions was established and the adjoint vector (AV) set of original vector (OV) set was obtained by Generalized Inverse Matrix (GIM).Then, the order parameter equation and its evolution process were deduced through the strict mathematics ratiocination. Moreover, in order to complete online structural condition update feature, the iterative update algorithm was presented. Subsequently, the pathway in which SDDM was realized through the modified Synergetic Neural Network (SNN) was introduced and its assessment indices were confirmed. Finally, the experimental platform with a two-story frame structure was set up. The performances of the proposed methodology were tested for damage identifications by loosening various screw nuts group scenarios. The experiments were conducted in different damage degrees, the disturbance environment and the noisy environment, respectively. The results show the feasibility of SDDM using piezoceramic sensors and actuators, and demonstrate a strong ability of anti-disturbance and anti-noise in frame structure applications. This proposed approach can be extended to the similar structures for damage identification.
자동차가 IT 기술과 융합되면서 편의성과 안전성 그리고 성능이 좋아지고 있다. 이와 관련하여 최근 자동차의 주행시 안전 및 주변 환경과 관련된 정보를 제공하기 위한 많은 알고리즘이 연구되고 있으며 차선 인식 또한 그 중 하나이다. 본 논문에서는 입력된 영상에서 차선 경계선을 인식한 뒤 ROI를 경계선 주변으로 제한하여 연산량을 줄이는 알고리즘을 제안한다. 제안된 알고리즘에서는 선처리 과정을 통해 차선 경계선으로 추정되는 영역의 주변만을 ROI로 지정하는 V-ROI를 이용하여 연산 영역을 줄이고 이를 통해 연산량과 연산 시간을 줄인다. 또한 차선 인식의 경우 고해상도의 영상이 필요하지 않으므로 입력 영상을 축소하여 차선 인식 알고리즘을 적용하는 방법을 통하여 영상의 해상도에 관계없이 연산량을 비슷하게 유지할 수 있다. 제안한 알고리즘을 C++와 OpenCV 라이브러리를 이용하여 구현하였으며 초당 30 프레임 이상을 처리하는 실시간 동작을 확인하였다.
Various monitoring systems have been implemented in civil infrastructure to ensure structural safety and integrity. In long-term monitoring, these systems generate a large amount of data, where anomalies are not unusual and can pose unique challenges for structural health monitoring applications, such as system identification and damage detection. Therefore, developing efficient techniques is quite essential to recognize the anomalies in monitoring data. In this study, several machine learning techniques are explored and implemented to detect and classify various types of data anomalies. A field dataset, which consists of one month long acceleration data obtained from a long-span cable-stayed bridge in China, is employed to examine the machine learning techniques for automated data anomaly detection. These techniques include the statistic-based pattern recognition network, spectrogram-based convolutional neural network, image-based time history convolutional neural network, image-based time-frequency hybrid convolution neural network (GoogLeNet), and proposed ensemble neural network model. The ensemble model deliberately combines different machine learning models to enhance anomaly classification performance. The results show that all these techniques can successfully detect and classify six types of data anomalies (i.e., missing, minor, outlier, square, trend, drift). Moreover, both image-based time history convolutional neural network and GoogLeNet are further investigated for the capability of autonomous online anomaly classification and found to effectively classify anomalies with decent performance. As seen in comparison with accuracy, the proposed ensemble neural network model outperforms the other three machine learning techniques. This study also evaluates the proposed ensemble neural network model to a blind test dataset. As found in the results, this ensemble model is effective for data anomaly detection and applicable for the signal characteristics changing over time.
Pei Yi Siow;Zhi Chao Ong;Shin Yee Khoo;Kok-Sing Lim;Bee Teng Chew
Smart Structures and Systems
/
제31권5호
/
pp.485-500
/
2023
Machine learning-based structural health monitoring (ML-based SHM) methods are researched extensively in the recent decade due to the availability of advanced information and sensing technology. ML methods are well-known for their pattern recognition capability for complex problems. However, the main obstacle of ML-based SHM is that it often requires pre-collected historical data for model training. In most actual scenarios, damage presence can be detected using the unsupervised learning method through anomaly detection, but to further identify the damage types would require prior knowledge or historical events as references. This creates the cold-start problem, especially for new and unobserved structures. Modal-based methods identify damages based on the changes in the structural global properties but often require dense measurements for accurate results. Therefore, a two-stage hybrid modal-machine learning damage detection scheme is proposed. The first stage detects damage presence using Principal Component Analysis-Frequency Response Function (PCA-FRF) in an unsupervised manner, whereas the second stage further identifies the damage. To solve the cold-start problem, mode shape assessment using the first mode is initiated when no trained model is available yet in the second stage. The damage identified by the modal-based method would be stored for future training. This work highlights the performance of the scheme in alleviating the cold-start issue as it transitions through different phases, starting from zero damage sample available. Results showed that single and multiple damages can be identified at an acceptable accuracy level even when training samples are limited.
본 논문에서는 IoT를 이용하여 원격 개폐가 가능한 스마트 공간 보안에 대한 장치 개발을 제안한다. 기존의 공간 보안 장치는 하드웨어를 부수거나 버튼 장치 또는 복제된 열쇠를 사용하여 개폐를 제어할 수 있었다. 최근 COVID-19 사태로 비접촉 장치에 대한 여러 응용 분야가 생겨났다. 본 연구에서는 장치에 접촉하지 않아도 앱을 통해 잠금을 해제 하는 기능을 가진 소형 공간 보안 장치 개발을 제안한다. 제어의 권한을 스마트폰으로 이전하여 사용자의 선택에 따라 하드웨어 조작만으로는 개폐할 수 없는 기능을 가진 장치를 고안하였다. 잠금 장치 접촉을 하지 않아도 앱을 이용하여 개폐가 가능하므로 편리하고 위생적이다. 스마트폰의 지문 인식 및 패턴 입력으로 사용자 인증 후 앱을 이용하므로 다중보안 기능을 가지고 있다. 사용자가 원한다면 앱 보안 해제 후 금고 또는 공간에 장착된 버튼을 직접 터치하거나 열쇠로 열면 보안이 해제된다. 또한 앱에 비활성 기능을 추가시켜 열쇠를 분실하거나 소형의 금고를 분실했을 경우 사용이 불가능하게 되어 금고의 문이 열리지 않도록 설계하였다. 본 연구는 보안이 필요한 사물에 다양하게 응용하여 효과적으로 확장할 수 있을 것으로 기대한다.
인체 소변은 혈액 내의 노폐물을 배출하는 과정으로 채취가 쉽고 다양한 물질들이 포함되어 있습니다. 요검사는 이를 통해 질병, 건강상태, 요로 감염 여부 등을 확인하는 용도로 사용됩니다. 요검사에는 물리적 성상 검사, 화학적 검사, 현미경 검사의 세 가지 방법이 있으며, 화학적 검사는 요검사지를 사용하여 쉽게 결과를 확인할 수 있다. 요검사지에는 다양한 항목들을 검사할 수 있으며, 이를 통해 다양한 질병들을 확인할 수 있다. 최근 스마트폰의 보급으로 스마트폰을 이용한 요검사지 판독 연구가 진행되고 있다. 스마트폰을 이용하여 요검사지의 색 변화를 감지하고 판독하는 방법이 있다. 이러한 방법은 RGB값과 색 차이 공식을 사용하여 판별한다. 그러나 다양한 환경 요인으로 인해 정확도가 떨어지는 문제가 있다. 본 논문은 이러한 문제를 해결하기 위해 딥러닝 모델을 적용한다. 특히, 경량화된 CNN(Convolutional Neural Networks) 모델을 사용하여 스마트폰 내에서 요검사지의 색 판별을 개선한다. CNN은 이미지 인식과 패턴 찾기에 유용한 모델로, 경량화된 버전도 사용 가능하다. 이를 통해 스마트폰에서 딥러닝 모델을 운영하고 정확한 요검사지 결과를 추출할 수 있다. 요검사지는 다양한 환경에서 촬영하여 딥러닝 모델 학습 이미지를 준비 하였으며 MobileNet V3을 사용하여 요검사 서비스 어플리케이션을 설계하였다.
소비자의 니즈가 다양해지면서 데이터 마이닝과 고도화된 고객관계관리(CRM) 기법을 활용한 체계적인 마케팅 서비스를 제공하는 기업이 증가하고 있으며, KB국민카드는 고객의 결제 데이터 등을 활용하여 고객 개개인의 니즈를 충족시키고 소비자의 평생가치를 극대화하기 위한 전략을 강조하고 있다. 실시간으로 고객의 카드이용과 고객 행동, 위치 정보 등을 감지하여 진행하는 고효율 마케팅 운영시스템인 스마트 오퍼링 시스템을 운영하고 있으며, 다양한 앱 등과 결합하여 더욱 정교화된 서비스를 제공하고 있다. KB국민카드는 스마트 오퍼링 시스템의 성공과 지속적인 성장을 위해 고도화되고 있는 ICT 기술과 인재 확보를 위한 투자를 진행해야 하며, 장기적인 관점에서의 수익확보를 위한 전략을 확립하여 체계적인 진행이 필요하다. 특히, 프라이버시 침해와 개인정보 유출 등의 문제가 쟁점이 되는 현재 상황에서 고객 정보를 활용한 마케팅에 대한 고객의 인식을 긍정적으로 유도하고, 보안성을 강조하는 기업 이미지 형성을 위한 노력이 필요하다. 본 연구는 CRM 전략의 변화 과정을 통해 현재 카드사의 실시간 CRM 전략을 KB 국민카드의 빅데이터 활용전략과 마케팅 활동을 통해 확인하고자 한다.
최근, 인공신경망 모델은 예측, 수치제어, 로봇제어, 패턴인식 등의 분야에서 촉망되는 기술이다. 본 연구에서는 인공신경망 모델을 이용하여 온실 외부 온도를 예측하고 이를 온실제어에 활용하는데 목적이 있다. 예측 모델의 성능 평가를 위해 다중회귀모델과 SVM 모델과의 비교분석을 수행하였다. 평가 방법으로는 10-Fold Cross Validation을 사용하였으며, 예측 성능 향상을 위해 상관관계분석 통해 데이터 축소를 수행하였고, 측정 데이터로부터 새로운 Factor 추출하여 데이터의 신뢰성을 확보하였다. 인공신경망 구축을 위해 Backpropagation algorithm을 사용하였으며, 다중회귀모델은 M5 method로 구축하였고, SVM 모델을 epsilon-SVM으로 구축하였다. 각 모델의 비교분석 결과 각각 0.9256, 1.8503과 7.5521로 나타났다. 또한 예측모델을 온실 난방부하 계산에 적용함으로써 온실에 사용되는 에너지 비용 절감을 통한 수입증대에 기여할 수 있다. 실험한 온실의 난방부하는 3326.4kcal/h이며, 총 난방시간이 $10000^{\circ}C/h$일 때 연료소비량은 453.8L로 예측된다. 아울러 데이터 마이닝 기술 중 하나인 인공신경망을 정밀온실제어, 재배기법, 수확예측 등 다양한 농업 분야에 적용함으로써 스마트 농업으로의 발전에 기여할 수 있다.
인간의 동작 인식은 건강관리, 상황기반 응용 등 실제적인 삶의 여러 부분에서 이용할 수 있기 때문에 중요한 주제이다. 건강관리를 위한 조언을 제공하는데 사용될 수 있기 때문에 동작인식 중 일상생활 동작인식이 주로 연구되고 있다. 특별히 넘어짐은 심장문제로 발생할 수 있기 때문에 넘어짐 인식은 독거 노인의 건강한 삶에 중요한 역할을 할 수 있다. 넘어짐 인식은 여전히 어려운 연구과제이다. 넘어짐 인식을 위해 몸에 여러 종류의 센서를 부착하는 시스템이 제안되었지만 이는 사용자가 센서를 부착하는 것을 잊어버리거나 이런 시스템에 익숙하지 않기 때문에 유용성에 문제가 있다. 본 연구에서는 사용자가 휴대하고 있는 스마트 폰 내의 가속도 및 자이로센서 값의 변화를 분석하여 알려진 넘어짐 패턴과 유사성을 분석하여 넘어짐을 판단하는 방법을 제안한다. 이 연구를 위해 5명의 자원자를 모집하여 다양한 종류의 넘어짐을 실험하였다. 실험결과는 본 연구를 통해서 넘어짐 인식을 위한 제안한 방식이 유효하다는 것을 보여준다. 실험 알고리즘은 많이 사용되고 있는 G1 스마트 폰 위에 구현하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.